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Abstract

Delaunay refinementis a technique for generating unstructured meshes of triangles or tetrahedra suitable
for use in the finite element method or other numerical methods for solving partial differential equations.
Popularized by the engineering community in the mid-1980s, Delaunay refinement operates by maintaining
a Delaunay triangulation or Delaunay tetrahedralization, which isrefinedby the insertion of additional ver-
tices. The placement of these vertices is chosen to enforce boundary conformity and to improve the quality
of the mesh. Pioneering papers by L. Paul Chew and Jim Ruppert have placed Delaunay refinement on firm
theoretical ground. The purpose of this thesis is to further this progress by cementing the foundations of
two-dimensional Delaunay refinement, and by extending the technique and its analysis to three dimensions.

In two dimensions, I unify the algorithms of Chew and Ruppert in a common theoretical framework. Using
Ruppert’s analysis technique, I prove that one of Chew’s algorithms can produce triangular meshes that are
nicely graded, are size-optimal, and have no angle smaller than26:5�. (Chew proved a30� bound without
guarantees on grading or size.) I show that there are inputs with small angles that cannot be meshed by
any algorithm without introducing new small angles; hence, all provably good mesh generation algorithms,
including those not yet discovered, suffer from a fundamental limitation. I introduce techniques for handling
small input angles that minimize the impact of this limitation on two-dimensional Delaunay refinement
algorithms.

In three dimensions, I introduce a Delaunay refinement algorithm that can produce tetrahedral meshes that
are nicely graded and whose tetrahedra have circumradius-to-shortest edge ratios bounded below1:63. By
sacrificing good grading in theory (but not in practice), one can improve the bound to1:15. This theoretical
guarantee ensures that all poor quality tetrahedra exceptslivers (a particular type of poor tetrahedron) are
removed. The slivers that remain are easily removed in practice, although there is no theoretical guarantee.
These results assume that all input angles are large; the removal of this restriction remains the most important
open problem in three-dimensional Delaunay refinement. Nevertheless, Delaunay refinement methods for
tetrahedral mesh generation have the rare distinction that they offer strong theoretical bounds and frequently
perform well in practice.

I describe my implementations of the triangular and tetrahedral Delaunay refinement algorithms. The robust-
ness of these mesh generators against floating-point roundoff error is strengthened by fast correct floating-
point implementations of four geometric predicates: the two-dimensional and three-dimensional orientation
and incircle tests. These predicates owe their speed to two features. First, they employ new fast algorithms
for arbitrary precision arithmetic on standard floating-point units. Second, they are adaptive; their running
time depends on the degree of uncertainty of the result, and is usually small. Hence, these predicates cost
little more than ordinary nonrobust predicates, but never sacrifice correctness for speed.

Keywords: tetrahedral mesh generation, Delaunay triangulation, arbitrary precision floating-point arith-
metic, computational geometry, geometric robustness
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Chapter 1

Introduction

Meshes composed of triangles or tetrahedra are used in applications such as computer graphics, interpo-
lation, surveying, and terrain databases. Although the algorithms described in this document have been
used successfully to generate meshes for these and other purposes, the central focus of this research is the
generation of meshes for use in numerical methods for the solution of partial differential equations. These
numerical methods are an irreplaceable means of simulating a wide variety of physical phenomena in sci-
entific computing. Furthermore, they place particularly difficult demands on mesh generation. If one can
generate meshes that are completely satisfying for numerical techniques like the finite element method, the
other applications fall easily in line.

Delaunay refinement, the topic of this thesis, is a mesh generation technique that has theoretical guar-
antees to back up its good performance in practice. The center of this thesis is an extensive exploration of
the theory of Delaunay refinement in two and three dimensions, found in Chapters 3 and 4. Implementation
concerns are addressed in Chapter 5. Delaunay refinement is based upon a well-known geometric structure
called theDelaunay triangulation, reviewed in Chapter 2.

This introductory chapter is devoted to explaining the problem that the remaining chapters undertake
to solve. Unfortunately, the problem is not entirely well-defined. In a nutshell, however, one wishes to
create a mesh that conforms to the geometry of the physical problem one wishes to model. This mesh must
be composed of triangles or tetrahedra of appropriate sizes—possibly varying throughout the mesh—and
these triangles or tetrahedra must be nicely shaped. Reconciling these constraints is not easy. Historically,
the automation of mesh generation has proven to be more challenging than the entire remainder of the
simulation process.

A detailed preview of the main results of the thesis concludes the chapter.

1



2 Jonathan Richard Shewchuk

Figure 1.1:Two and three-dimensional finite element meshes. At left, each triangle is an element. At right,
each tetrahedron is an element.

1.1 Meshes and Numerical Methods

Many physical phenomena in science and engineering can be modeled by partial differential equations
(PDEs). When these equations have complicated boundary conditions or are posed on irregularly shaped
objects or domains, they usually do not admit closed-form solutions. A numerical approximation of the
solution is thus necessary.

Numerical methods for solving PDEs include thefinite element method(FEM), thefinite volume method
(FVM, also known as thecontrol volume method), and theboundary element method(BEM). They are used
to model disparate phenomena such as mechanical deformation, heat transfer, fluid flow, electromagnetic
wave propagation, and quantum mechanics. These methods numerically approximate the solution of a linear
or nonlinear PDE by replacing the continuous system with a finite number of coupled linear or nonlinear
algebraic equations. This process ofdiscretizationassociates a variable with each of a finite number of
points in the problem domain. For instance, to simulate heat conduction through an electrical component,
the temperature is recorded at a number of points, callednodes, on the surface and in the interior of the
component.

It is not enough to choose a set of points to act as nodes; the problem domain (or in the BEM, the
boundary of the problem domain) must be partitioned into small pieces of simple shape. In the FEM, these
pieces are calledelements, and are usually triangles or quadrilaterals (in two dimensions), or tetrahedra or
hexahedral bricks (in three dimensions). The FEM employs a node at every element vertex (and sometimes
at other locations); each node is typically shared among several elements. The collection of nodes and
elements is called afinite element mesh. Two and three-dimensional finite element meshes are illustrated
in Figure 1.1. Because elements have simple shapes, it is easy to approximate the behavior of a PDE, such
as the heat equation, on each element. By accumulating these effects over all the elements, one derives a
system of equations whose solution approximates a set of physical quantities such as the temperature at each
node.

The FVM and the BEM also use meshes, albeit with differences in terminology and differences in
the meshes themselves. Finite volume meshes are composed ofcontrol volumes, which sometimes are
clusters of triangles or tetrahedra, and sometimes are the cells of a geometric structure known as theVoronoi
diagram. In either case, an underlying simplicial mesh is typically used to interpolate the nodal values and to
generate the control volumes. Boundary element meshes do not partition an object; only its boundaries are
partitioned. Hence, a two-dimensional domain would have boundaries divided into straight-line elements,
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Figure 1.2:Structured (left) and unstructured (right) meshes. The structured mesh has the same topology
as a square grid of triangles, although it is deformed enough that one might fail to notice its structure.

and a three-dimensional domain would have boundaries partitioned into polygonal (typically triangular)
elements.

Meshes can (usually) be categorized as structured or unstructured. Figure 1.2 illustrates an example of
each. Structured meshes exhibit a uniform topological structure that unstructured meshes lack. A functional
definition is that in a structured mesh, the indices of the neighbors of any node can be calculated using
simple addition, whereas an unstructured mesh necessitates the storage of a list of each node’s neighbors.

The generation of both structured and unstructured meshes can be surprisingly difficult, each posing
challenges of their own. This document considers only the task of generating unstructured meshes, and fur-
thermore considers only simplicial meshes, composed of triangles or tetrahedra. Meshes with quadrilateral,
hexahedral, or other non-simplicial elements are passed over, although they comprise an interesting field of
study in their own right.

1.2 Desirable Properties of Meshes and Mesh Generators

Unfortunately, discretizing one’s object of simulation is a more difficult problem than it appears at first
glance. A useful mesh satisfies constraints that sometimes seem almost contradictory. A mesh must conform
to the object or domain being modeled, and ideally should meet constraints on both the size and shape of its
elements.

Consider first the goal of correctly modeling the shape of a problem domain. Scientists and engineers
often wish to model objects or domains with complex shapes, and possibly with curved surfaces. Boundaries
may appear in the interior of a region as well as on its exterior surfaces.Exterior boundariesseparate
meshed and unmeshed portions of space, and are found on the outer surface and in internal holes of a
mesh.Interior boundariesappear within meshed portions of space, and enforce the constraint that elements
may not pierce them. These boundaries are typically used to separate regions that have different physical
properties; for example, at the contact plane between two materials of different conductivities in a heat
propagation problem. An interior boundary is represented by a collection of edges (in two dimensions) or
faces (in three dimensions) of the mesh.

In practice, curved boundaries can often be approximated by piecewise linear boundaries, so theoret-
ical mesh generation algorithms are often based upon the idealized assumption that the input geometry is
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piecewise linear—composed without curves. This assumption is maintained throughout this document, and
curved surfaces will not be given further consideration. This is not to say that the problem of handling
curves is so easily waved aside; it surely deserves study. However, the simplified problem is difficult enough
to provide ample gristle for the grinder.

Given an arbitrary straight-line two-dimensional region, it is not difficult to generate a triangulation
that conforms to the shape of the region. It is trickier to find a tetrahedralization that conforms to an
arbitrary linear three-dimensional region; some of the fundamental difficulties of doing so are described
in Section 2.1.3. Nevertheless, the problem is reasonably well understood, and a thorough survey of the
pertinent techniques, in both two and three dimensions, is offered by Bern and Eppstein [10].

A second goal of mesh generation is to offer as much control as possible over the sizes of elements in
the mesh. Ideally, this control includes the ability to grade from small to large elements over a relatively
short distance. The reason for this requirement is that element size has two effects on a finite element
simulation. Small, densely packed elements offer more accuracy than larger, sparsely packed elements;
but the computation time required to solve a problem is proportional to the number of elements. Hence,
choosing an element size entails trading off speed and accuracy. Furthermore, the element size required to
attain a given amount of accuracy depends upon the behavior of the physical phenomena being modeled, and
may vary throughout the problem domain. For instance, a fluid flow simulation requires smaller elements
amid turbulence than in areas of relative quiescence; in three dimensions, the ideal element in one part of
the mesh may vary in volume by a factor of a million or more from the ideal element in another part of the
mesh. If elements of uniform size are used throughout the mesh, one must choose a size small enough to
guarantee sufficient accuracy in the most demanding portion of the problem domain, and thereby possibly
incur excessively large computational demands. To avoid this pitfall, a mesh generator should offer rapid
gradation from small to large sizes.

Given acoarsemesh—one with relatively few elements—it is not difficult torefine it to produce an-
other mesh having a larger number of smaller elements. The reverse process is not so easy. Hence, mesh
generation algorithms often set themselves the goal of being able, in principle, to generate as small a mesh
as possible. (By “small”, I mean one with as few elements as possible.) They typically offer the option to
refine portions of the mesh whose elements are not small enough to yield the required accuracy.

A third goal of mesh generation, and the real difficulty, is that the elements should be relatively “round”
in shape, because elements with large or small angles can degrade the quality of the numerical solution.

Elements with large angles can cause a largediscretization error; the solution yielded by a numerical
method such as the finite element method may be far less accurate than the method would normally promise.
In principle, the computed discrete solution should approach the exact solution of the PDE as the element
size approaches zero. However, Babuˇska and Aziz [3] show that if mesh angles approach180� as the element
size decreases, convergence to the exact solution may fail to occur.

Another problem caused by large angles is large errors in derivatives of the solution, which arise as
an artifact of interpolation over the mesh. Figure 1.3 demonstrates the problem. The element illustrated
has values associated with its nodes that represent an approximation of some physical quantity. If linear
interpolation is used to estimate the solution at non-nodal points, the interpolated value at the center of the
bottom edge is51, as illustrated. This interpolated value depends only on the values associated with the
bottom two nodes, and is independent of the value associated with the upper node. As the angle at the upper
node approaches180�, the interpolated point (with value51) becomes arbitrarily close to the upper node
(with value48). Hence, the directional derivative of the estimated solution in the vertical direction may
become arbitrarily large, and is clearly specious, even though the nodal values may themselves be perfectly
accurate. This effect occurs because a linearly interpolated value is necessarily in error if the true solution
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22
51

80

48

Figure 1.3:The nodal values depicted may represent an accurate estimate of the correct solution. Never-
theless, as the large angle of this element approaches 180�, the vertical directional derivative, estimated via
linear interpolation, becomes arbitrarily large.

Figure 1.4:Elements are not permitted to meet in the manner depicted here.

is not linear, and any error is magnified in the derivative computation because of the large angle. This
problem can afflict any application that uses meshes for interpolation, and not just PDE solvers. However,
the problem is of particular concern in simulations of mechanical deformation, in which the derivatives of a
solution (the strains) are of interest, and not the solution itself (the displacements).

Small angles are also feared, because they can cause the coupled systems of algebraic equations that
numerical methods yield to be ill-conditioned [16]. If a system of equations is ill-conditioned, roundoff
error degrades the accuracy of the solution if the system is solved by direct methods, and convergence is
slow if the system is solved by iterative methods.

By placing a lower bound on the smallest angle of a triangulation, one is also bounding the largest angle;
for instance, in two dimensions, if no angle is smaller than�, then no angle is larger than180�� 2�. Hence,
many mesh generation algorithms take the approach of attempting to bound the smallest angle.

Despite this discussion, the effects of element shape on numerical methods such as the finite element
method are still being investigated. Our understanding of the relative merit of different metrics for measuring
element quality, or the effects of small numbers of poor quality elements on numerical solutions, is based as
much on engineering experience and rumor as it is on mathematical foundations. Furthermore, the notion
of a nicely shaped element varies depending on the numerical method, the type of problem being solved,
and the polynomial degree of the piecewise functions used to interpolate the solution over the mesh. For
physical phenomena that have anisotropic behavior, the ideal element may be long and thin, despite the
claim that small angles are usually bad. Hence, the designer of algorithms for mesh generation is shooting
at an ill-defined target.

The constraints of element size and element shape are difficult to reconcile because elements must
meet squarely along the full extent of their shared edges or faces. Figure 1.4 illustrates illegal meetings
between adjacent elements. For instance, at left, the edge of one triangular element is a portion of an
edge of an adjoining element. There are variants of methods like the finite element method that permit
suchnonconforming elements. However, such elements are not preferred, as they may degrade or ruin
the convergence of the method. Although nonconforming elements make it easier to create a mesh with
seemingly nicely shaped elements, the problems of numerical error may still persist.

For an example of how element quality and mesh size are traded off, look ahead to Figure 3.19 on
Page 61.
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1.3 Why Unstructured Meshes?

Is it really worth the trouble to use unstructured meshes? The process of solving the linear or nonlinear sys-
tems of equations yielded by the finite element method and its brethren is simpler and faster on structured
meshes, because of the ease of determining each node’s neighbors. Because unstructured meshes necessi-
tate the storage of pointers to each node’s neighbors, their demands on storage space and memory traffic are
greater. Furthermore, the regularity of structured meshes makes it straightforward to parallelize computa-
tions upon them, whereas unstructured meshes engender the need for sophisticated partitioning algorithms
and parallel unstructured solvers.

Nonetheless, there are cases in which unstructured meshes are preferable or even indispensable. Many
problems are defined on irregularly shaped domains, and resist structured discretization. Several more subtle
advantages of unstructured meshes are visible in Figures 1.6 and 1.7, which depict meshes used to model a
cross-section of the Los Angeles Basin, itself illustrated in Figure 1.5.

A numerical method is used to predict the surface ground motion due to a strong earthquake. The mesh
of Figure 1.7 is finer in the top layers of the valley, reflecting the much smaller wavelength of seismic
waves in the softer upper soil, and becomes coarser with increasing depth, as the soil becomes stiffer and
the corresponding seismic wavelength increases by a factor of twenty. Whereas an unstructured mesh can
be flexibly tailored to the physics of this problem, the structured mesh must employ a uniform horizontal
distribution of nodes, the density being dictated by the uppermost layer. As a result, it has five times as
many nodes as the unstructured mesh, and the solution time and memory requirements of the simulation
are correspondingly larger. The disparity is even more pronounced in three-dimensional domains and in
simulations where the scales of the physical phenomena vary more.

Another important difference is that the mesh of Figure 1.7 conforms to the interior boundaries of the
basin in a way that the mesh of Figure 1.6 cannot, and hence may better model reflections of waves from the
interfaces between layers of soil with differing densities. This difference in accuracy only manifests itself if
the unstructured and structured meshes under comparison are relatively coarse.

Unstructured meshes, far better than structured meshes, can provide multiscale resolution and confor-
mity to complex geometries.

1.4 Outline of the Thesis

The central topic of this thesis is the study of a technique, calledDelaunay refinement, for the generation of
triangular and tetrahedral meshes. Delaunay refinement methods are based upon a well-known geometric
construction called theDelaunay triangulation, which is discussed extensively in Chapter 2.

Chapter 2 also briefly surveys some of the previous research on simplicial mesh generation. Algorithms
based upon the Delaunay triangulation are discussed. So are several fundamentally different algorithms,
some of which are distinguished by having provably good bounds on the quality of the meshes they produce.
There are several types of bounds an algorithm might have; for instance, quite a few mesh generation
algorithms produce provably good elements. In other words, some quality measure—usually the smallest
or largest angle—of every element is constrained by some minimum or maximum bound. Some of these
algorithms also offer bounds on the sizes of the meshes they generate. For some, it is possible to prove that
the meshes are nicely graded, in a mathematically well-defined sense that is explained in Chapter 3. Roughly
speaking, the presence of small elements in one portion of the mesh does not have an unduly strong effect
on the sizes of elements in another nearby portion of the mesh. One should be aware that the theoretical
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Figure 1.5:Los Angeles Basin.

Figure 1.6:Structured mesh of Los Angeles Basin.

Figure 1.7:Unstructured mesh of Los Angeles Basin.

bounds promised by mesh generation algorithms are not in every case strong enough to be useful guarantees
in practice, but some of these algorithms do much better in practice than their theoretical bounds suggest.

Jim Ruppert and L. Paul Chew have developed two-dimensional Delaunay refinement algorithms that
exhibit provable bounds on element quality, mesh grading, and mesh size; these algorithms are effective in
practice as well. In Chapter 3, I review these algorithms, unify them, and solve an outstanding problem
related to inputs with small angles.

To clarify the relationship between these algorithms (including my own modifications), I list here the
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provable bounds on each of these algorithms prior and subsequent to the present research. Chew’s first De-
launay refinement algorithm [19], published as a technical report in 1989, was the first Delaunay refinement
algorithm to offer a guarantee: it produces meshes with no angle smaller than30�. The elements of these
meshes are of uniform size, however; grading of element sizes is not offered. Ruppert’s Delaunay refine-
ment algorithm [82], first published as a technical report in 1992 [80], offers different guarantees. Although
it promises only a minimum angle of roughly20:7�, it also offers a guarantee of good grading, which in turn
can be used to prove that the algorithm issize-optimal: the number of elements in the final mesh is at most
a constant factor larger than the number in the best possible mesh that meets the same bound on minimum
angle. Chew published a second Delaunay refinement algorithm [21] in 1993, which offers the same30�

lower bound as his first algorithm. Chew’s second algorithm produces nicely graded meshes in practice,
although Chew provides no theoretical guarantee of this behavior.

Ruppert’s algorithm and Chew’s second algorithm can take a minimum angle as a parameter, and pro-
duce a mesh with no angle smaller than that minimum. In Ruppert’s algorithm, this parameter may be
chosen between0� and20:7�. The bounds on grading and size-optimality are stronger for smaller minimum
angles. As the minimum angle increases to20:7�, the other bounds become progressively weaker. In prac-
tice, both Ruppert’s algorithm and Chew’s second algorithm exhibit a tradeoff between element quality and
mesh size, but allow better angle bounds than the theory predicts. (Again, see Figure 3.19 for an example of
the tradeoff in Ruppert’s algorithm.)

My new results in two-dimensional mesh generation, also detailed in Chapter 3, are as follows. I show
that Ruppert’s analysis technique can be applied to Chew’s second algorithm, and I thereby prove that
Chew’s second algorithm produces nicely graded meshes for minimum angles of up to roughly26:5�.
Hence, if a user specifies a minimum angle no greater than26:5�, good grading and size-optimality are
guaranteed. (Observe that this improves upon the20:7� bound of Ruppert’s algorithm.) If a minimum angle
between26:5� and30� is specified, termination is still guaranteed (by Chew’s own result), but good grading
and size-optimality are not theoretically guaranteed (although they are exhibited in practice). I also intro-
duce the notion ofrange-restricted segment splitting, which extends an idea of Chew. Ruppert’s algorithm,
modified to use range-restricted segment splitting, is guaranteed to terminate for minimum angles up to30�,
like Chew’s algorithm.

Ruppert’s and Chew’s algorithms are not entirely satisfying because their theoretical guarantees do not
apply when the problem domain has small angles. In this circumstance, their behavior is poor in practice as
well; they may even fail to terminate. This problem reflects not merely a deficiency of the algorithms, but a
fundamental difficulty in triangular mesh generation. Although small angles inherent in the input geometry
cannot be removed, one would like to find a way to triangulate a problem domain without creating anynew
small angles. I prove that this problem is not always soluble. For instance, I can exhibit an input that bears
an angle of half a degree, and cannot be triangulated without adding a new angle smaller than30�. Similarly,
for any angle�, however small, I can exhibit an input that cannot be triangulated without creating a new
angle smaller than�. (The input I exhibit has a small angle which itself is much smaller than�.)

This negative result implies that Ruppert’s algorithm will never terminate on such an input; it will
ceaselessly try to rid itself of removable small angles, only to find the culprits replaced by others. I propose
a modification to the algorithm that prevents this cycle of endless refinement; termination is guaranteed. A
few bad angles must necessarily remain in the mesh, but these appear only near small input angles. The
modification does not affect the behavior of the algorithm on inputs with no small angles.

Based on these foundations, I design a three-dimensional Delaunay refinement algorithm in Chapter 4.
This chapter is the climax of the thesis, although its results are the simplest to outline. I first extend Ruppert’s
algorithm to three dimensions, and show that the extension generates nicely graded tetrahedral meshes
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whose circumradius-to-shortest edge ratios are nearly bounded below two. By adopting two modifications
to the algorithm,equatorial lensesand range-restricted segment splitting, the bound on each element’s
circumradius-to-shortest edge ratio can be improved to1:63 with a guarantee of good grading, or to1:15
without. (Meshes generated with a bound of1:15 exhibit good grading in practice, even if there is no
theoretical guarantee.)

A bound on the circumradius-to-shortest edge ratio of a tetrahedron is helpful, but does not imply any
bound on the minimum or maximum dihedral angle. However, some numerical methods, including the finite
element method, require such bounds to ensure numerical accuracy. The Delaunay refinement algorithm
is easily modified to generate meshes wherein all tetrahedra meet some bound on their minimum angle.
Termination can no longer be guaranteed in theory, but is obtained in practice for reasonable angle bounds.

The main shortcoming of my three-dimensional Delaunay refinement algorithm is that severe restrictions
are made that outlaw small angles in the input geometry. One would like to have methods for handling small
input angles similar to those I have developed for the two-dimensional case. I am optimistic that such
methods will be found, but I do not discuss the problem in any depth herein.

I have implemented both the two-dimensional and three-dimensional Delaunay refinement algorithms.
A great deal of care is necessary to turn these algorithms into practical mesh generators. My thoughts on the
choice of data structures, triangulation algorithms, and other implementation details are found in Chapter 5.

Although nearly all numerical algorithms are affected by floating-point roundoff error, there are funda-
mental reasons why geometric algorithms are particularly susceptible. In ordinary numerical algorithms,
the most common problem due to roundoff error is inaccurate results, whereas in computational geometry,
a common result is outright failure to produce any results at all. In many numerical algorithms, problems
due to roundoff error can be eliminated by careful numerical analysis and algorithm design. Geometric
algorithms yield to such an approach with greater difficulty, and the only easy way to ensure geometric
robustness is through the use of exact arithmetic.

Unfortunately, exact arithmetic is expensive, and can slow geometric algorithms considerably. Chapter 6
details my contributions to the solution of this problem. My approach is based firstly upon a new fast
technique for performing exact floating-point arithmetic using standard floating-point units, and secondly
upon a method for performing these computations adaptively, spending only as much time as is necessary
to ensure the integrity of the result. Using these two techniques, I have written several geometric predicates
that greatly improve the robustness of my mesh generators, and are useful in other geometric applications
as well.





Chapter 2

The Delaunay Triangulation and Mesh
Generation

The Delaunay triangulation is a geometric structure that has enjoyed great popularity in mesh generation
since mesh generation was in its infancy. In two dimensions, it is not hard to understand why: the Delaunay
triangulation of a vertex set maximizes the minimum angle among all possible triangulations of that vertex
set. If one is concerned with element quality, it seems almost silly to consider using a triangulation that is
not Delaunay.

This chapter surveys Delaunay triangulations, their properties, and several algorithms for constructing
them. I focus only on details relevant to mesh generation; for more general surveys, Aurenhammer [1], Bern
and Eppstein [10], and Fortune [33] are recommended. I also discuss two generalizations of the Delaunay
triangulation: the constrained Delaunay triangulation, which ensures that input segments are present in the
mesh, and the Delaunay tetrahedralization, which generalizes the Delaunay triangulation to three dimen-
sions. The Delaunay tetrahedralization is not quite so effective as the Delaunay triangulation at producing
elements of good quality, but it has nevertheless enjoyed nearly as much popularity in the mesh generation
literature as its two-dimensional cousin.

Also found in this chapter is a brief survey of research in mesh generation, with special attention given
to methods based on Delaunay triangulations and tetrahedralizations, and methods that generate meshes that
are guaranteed to have favorable qualities. These algorithms are part of the history that led to the discovery
of the provably good Delaunay refinement algorithms studied in Chapters 3 and 4.

11
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Figure 2.1:A Delaunay triangulation.

Figure 2.2:Each edge on the convex hull is Delaunay, because it is always possible to find an empty circle
that passes through its endpoints.

2.1 Delaunay Triangulations and Tetrahedralizations

2.1.1 The Delaunay Triangulation

In two dimensions, atriangulation of a setV of vertices is a setT of triangles whose vertices collectively
form V , whose interiors do not intersect each other, and whose union completely fills the convex hull ofV .

The Delaunay triangulationD of V , introduced by Delaunay [27] in 1934, is the graph defined as
follows. Any circle in the plane is said to beemptyif it contains no vertex ofV in its interior. (Vertices are
permitted on the circle.) Letu andv be any two vertices ofV . The edgeuv is in D if and only if there
exists an empty circle that passes throughu andv. An edge satisfying this property is said to beDelaunay.
Figure 2.1 illustrates a Delaunay triangulation.

The Delaunay triangulation of a vertex set is clearly unique, because the definition given above specifies
an unambiguous test for the presence or absence of an edge in the triangulation. Every edge of the convex
hull of a vertex set is Delaunay. Figure 2.2 illustrates the reason why. For any convex hull edgee, it is
always possible to find an empty circle that containse by starting with the smallest containing circle ofe
and “growing” it away from the triangulation.
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Figure 2.3:Every triangle of a Delaunay triangulation has an empty circumcircle.

t

e

w

v

Figure 2.4:If the triangle t is not Delaunay, then at least one of its edges (in this case, e) is not Delaunay.

Every edge connecting a vertex to its nearest neighbor is Delaunay. Ifw is the vertex nearestv, the
smallest circle passing throughv andw does not contain any vertices.

It’s not at all obvious that the set of Delaunay edges of a vertex set collectively forms a triangulation.
For the definition I have given above, the Delaunay triangulation is guaranteed to be a triangulation only if
the vertices ofV are ingeneral position, here meaning that no four vertices ofV lie on a common circle.
As a first step to proving this guarantee, I describe the notion of a Delaunay triangle. Thecircumcircleof
a triangle is the unique circle that passes through all three of its vertices. A triangle is said to beDelaunay
if and only if its circumcircle is empty. This defining characteristic of Delaunay triangles, illustrated in
Figure 2.3, is called theempty circumcircle property.

Lemma 1 Let T be a triangulation. If all the triangles ofT are Delaunay, then all the edges ofT are
Delaunay, and vice versa.

Proof: If all the triangles ofT are Delaunay, then the circumcircle of every triangle is empty. Because every
edge ofT belongs to a triangle ofT , every edge is contained in an empty circle, and is thus Delaunay.

If all the edges ofT are Delaunay, suppose for the sake of contradiction that some trianglet of T is not
Delaunay. BecauseT is a triangulation,t cannot contain any vertices (except its corners), so some vertex
v of T lies inside the circumcircle oft, but outsidet itself. Lete be the edge oft that separatesv from the
interior oft, and letw be the vertex oft oppositee, as illustrated in Figure 2.4. One cannot draw a containing
circle ofe that contains neitherv norw, soe is not Delaunay. The result follows by contradiction. �
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e e

Figure 2.5:Two triangulations of a vertex set. At left, e is locally Delaunay; at right, e is not.

e

Figure 2.6:In this concave quadrilateral, e cannot be flipped.

The method by which I prove that the Delaunay triangulation is a triangulation is somewhat nonintuitive.
I will describe a well-known algorithm called theflip algorithm, and show that all the edges of the triangu-
lation produced by the flip algorithm are Delaunay. Then I will show that no other edges are Delaunay.

The flip algorithm begins with an arbitrary triangulation, and searches for an edge that is notlocally De-
launay. All edges on the boundary (convex hull) of the triangulation are considered to be locally Delaunay.
For any edgee not on the boundary, the condition of being locally Delaunay is similar to the condition of be-
ing Delaunay, but only the two triangles that containe are considered. For instance, Figure 2.5 demonstrates
two different ways to triangulate a subset of four vertices. In the triangulation at left, the edgee is locally
Delaunay, because the depicted containing circle ofe does not contain either of the vertices oppositee in the
two triangles that containe. In the triangulation at right,e is not locally Delaunay, because the two vertices
oppositee preclude the possibility thate has an empty containing circle. Observe that if the triangles at left
are part of a larger triangulation,e might not be Delaunay, because vertices may lie in the containing circle,
although they lie in neither triangle. However, such vertices have no bearing on whether or note is locally
Delaunay.

Whenever the flip algorithm identifies an edge that is not locally Delaunay, the edge isflipped. To flip an
edge is to delete it, thereby combining the two containing triangles into a singlecontaining quadrilateral,
and then to insert the crossing edge of the quadrilateral. Hence, an edge flip could convert the triangulation
at left in Figure 2.5 into the triangulation at right, or vice versa. (The flip algorithm would perform only the
latter flip.) Not all triangulation edges are flippable, as Figure 2.6 shows, because the containing quadrilateral
of an edge might not be convex.
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Figure 2.7: (a) Case where e is locally Delaunay. (b) Case where e is not locally Delaunay. The edge
created if e is flipped is locally Delaunay.

Lemma 2 Let e be an edge of a triangulation ofV . Either e is locally Delaunay, ore is flippable and the
edge created by flippinge is locally Delaunay.

Proof: Let v andw be the vertices oppositee, which together withe define the containing quadrilateral ofe,
illustrated in Figure 2.7. LetC be the circle that passes throughv and the endpoints ofe. Eitherw is strictly
insideC, orw lies on or outsideC.

If w is on or outsideC, as in Figure 2.7(a), then the empty circleC demonstrates thate is locally
Delaunay.

If w is insideC, thenw is contained in the section ofC defined bye and oppositev; this section is
shaded in Figure 2.7(b). The containing quadrilateral ofe is thus constrained to be strictly convex, and the
edgee is flippable. Furthermore, the circle that passes throughv andw, and is tangent toC at v, does not
contain the endpoints ofe, as Figure 2.7(b) demonstrates; hence the edgevw is locally Delaunay. �

The success of the flip algorithm relies on the fact, proven below, that if any edge of the triangulation is
not Delaunay, then there is an edge that is not locally Delaunay, and can thus be flipped.

Lemma 3 LetT be a triangulation whose edges are all locally Delaunay. Then every edge ofT is (globally)
Delaunay.

Proof: Suppose for the sake of contradiction that all edges ofT are locally Delaunay, but some edge ofT
is not Delaunay. By Lemma 1, the latter assertion implies that some trianglet of T is not Delaunay. Letv
be a vertex inside the circumcircle oft, and lete1 be the edge oft that separatesv from the interior oft, as
illustrated in Figure 2.8(a). Without loss of generality, assume thate1 is oriented horizontally, witht below
e1.

Draw a line segment from the midpoint ofe1 to v (see the dashed line in Figure 2.8(a)). Lete1, e2,
e3, : : :, em be the sequence of triangulation edges (from bottom to top) whose interiors this line segment
intersects. (If the line segment intersects some vertex other thanv, replacev with the first such vertex.)
Let wi be the vertex aboveei that forms a triangleti in conjunction withei. BecauseT is a triangulation,
wm = v.
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Figure 2.8:(a) If v lies inside the circumcircle of t, there must be an edge between v and t that is not locally
Delaunay. (b) Because v lies above e1 and inside the circumcircle of t, and because w1 lies outside the
circumcircle of t, v must lie inside the circumcircle of t1.

By assumption,e1 is locally Delaunay, sow1 lies outside the circumcircle oft. As Figure 2.8(b) shows, it
follows that the circumcircle oft1 contains every point abovee1 in the circumcircle oft, and hence contains
v. Repeating this argument inductively, one finds that the circumcircle oftm containsv in its interior. But
wm = v is a vertex oftm, which contradicts the claim thatv is in the interior of the circumcircle oftm. �

An immediate consequence of Lemma 3 is that if a triangulation contains an edge that is not Delaunay,
then it contains an edge that is not locally Delaunay, and thus the flip algorithm may proceed. The following
lemma shows that the flip algorithm cannot become trapped in an endless loop.

Lemma 4 Given a triangulation ofn vertices, the flip algorithm terminates afterO(n2) edge flips, yielding
a triangulation whose edges are all Delaunay.

Proof: Let �(T ) be a function defined over all triangulations, equal to the number of vertex-triangle pairs
(v; t) such thatv is a vertex ofT , t is a triangle ofT , andv lies inside the circumcircle oft. BecauseT has
n vertices andO(n) triangles,�(T ) 2 O(n2).

Suppose an edgee of T is flipped, forming a new triangulationT 0. Let t1 and t2 be the triangles
containinge, and letv1 andv2 be the apices oft1 andt2. Becausee is not locally Delaunay,v1 is contained
in the circumcircle oft2, andv2 is contained in the circumcircle oft1. Let t01 andt02 be the triangles that
replacet1 and t2 after the edge flip. LetC1, C2, C 0

1, andC 0
2 be the circumcircles oft1, t2, t01, and t02

respectively, as illustrated in Figure 2.9(a).

It is not difficult to show thatC1[C2 � C 0
1[C 0

2 (Figure 2.9(b)) andC1\C2 � C 0
1\C 0

2 (Figure 2.9(c)).
Therefore, if a vertexv lies insidenv circumcircles of triangles ofT , and hence contributesnv to the count
�(T ), thenv lies inside no more thannv circumcircles of triangles ofT 0, and contributes at mostnv to the
count�(T 0). If, after the edge flip, a vertex is counted because it lies inC 0

1 or C 0
2, then it must have lain in

C1 orC2 before the edge flip; and if it lies in bothC 0
1 andC 0

2, then it must have lain in bothC1 andC2.

However, the verticesv1 andv2 each lie in one less circumcircle than before the edge flip. For instance,
v1 lay inC2, but lies in neitherC 0

1 norC 0
2. Hence,�(T 0) � �(T )� 2.
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Figure 2.9: (a) Circumcircles before and after an edge flip. (b) The union of the circumcircles afterward
(shaded) is contained in the union of the prior circumcircles. (c) The intersection of the circumcircles after-
ward (shaded) is contained in the intersection of the prior circumcircles.
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Figure 2.10:If no four vertices are cocircular, two crossing edges cannot both be Delaunay.

The flip algorithm terminates afterO(n2) edge flips because� 2 O(n2), every edge flip reduces� by
at least two, and� cannot fall below zero. The flip algorithm terminates only when every edge is locally
Delaunay; thus, by Lemma 3, every edge is Delaunay. �

Theorem 5 Let V be a set of three or more vertices in the plane that are not all collinear. If no four
vertices ofV are cocircular, the Delaunay triangulation ofV is a triangulation, and is produced by the flip
algorithm.

Proof: Because the vertices ofV are not all collinear, there exists a triangulation ofV . By Lemma 4, the
application of the flip algorithm to any triangulation ofV produces a triangulationD whose edges are all
Delaunay.

I shall show that no other edge is Delaunay. Consider any edgev1v2 62 D, with v1; v2 2 V . BecauseD
is a triangulation,v1v2 must cross some edgew1w2 2 D. Becausew1w2 is inD, it is Delaunay, and there
is a circleC passing throughw1 andw2 whose interior contains neitherv1 nor v2. Because no four vertices
are cocircular, at least one ofv1 andv2 lies strictly outsideC. It follows that no empty circle passes through
v1 andv2, hencev1v2 is not Delaunay (see Figure 2.10).

Therefore,D is the Delaunay triangulation ofV . �
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(a) (b) (c)

Figure 2.11:Three ways to define the Delaunay diagram in the presence of cocircular vertices. (a) Include
all Delaunay edges, even if they cross. (b) Exclude all crossing Delaunay edges. (c) Choose a subset of
Delaunay edges that forms a triangulation.

What if V contains cocircular vertices? In this circumstance, the Delaunay triangulation may have
crossing edges, as illustrated in Figure 2.11(a). Because an arbitrarily small perturbation of the input vertices
can change the topology of the triangulation,V and its Delaunay triangulation are said to bedegenerate.

The definition of “Delaunay triangulation” is usually modified to prevent edges from crossing. Occa-
sionally, one sees in the literature a definition wherein all such crossing edges are omitted; polygons with
more than three sides may appear in the Delaunay diagram, as Figure 2.11(b) shows. (The usefulness of this
definition follows in part because the graph thus defined is the geometric dual of the well-known Voronoi
diagram.) For most applications, however, it is desirable to have a true triangulation, and some of the De-
launay edges (and thus, some of the Delaunay triangles) are omitted to achieve this, as in Figure 2.11(c). In
this case, the Delaunay triangulation is no longer unique. The flip algorithm will find one of the Delaunay
triangulations; the choice of omitted Delaunay edges depends upon the starting triangulation. Because nu-
merical methods like the finite element method generally require a true triangulation, I will use this latter
definition of “Delaunay triangulation” throughout the rest of this document.

Delaunay triangulations are valuable in part because they have the following optimality properties.

Theorem 6 Among all triangulations of a vertex set, the Delaunay triangulation maximizes the minimum
angle in the triangulation, minimizes the largest circumcircle, and minimizes the largest min-containment
circle, where themin-containment circleof a triangle is the smallest circle that contains it.

Proof: It can be shown that each of these properties is locally improved when an edge that is not locally
Delaunay is flipped. The optimal triangulation cannot be improved, and thus has no locally Delaunay edges.
By Theorem 5, a triangulation with no locally Delaunay edges is the Delaunay triangulation. �

The property of max-min angle optimality was first noted by Lawson [59], and helps to account for
the popularity of Delaunay triangulations in mesh generation. Unfortunately, neither this property nor the
min-max circumcircle property generalizes to Delaunay triangulations in dimensions higher than two. The
property of minimizing the largest min-containment circle was first noted by D’Azevedo and Simpson [25],
and has been shown to hold for higher-dimensional Delaunay triangulations by Rajan [78].
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Figure 2.12:The Delaunay triangulation of a set of vertices does not usually solve the mesh generation
problem, because it may contain poor quality triangles and omit some domain boundaries.

Figure 2.13:By inserting additional vertices into the triangulation, boundaries can be recovered and poor
quality elements can be eliminated.

2.1.2 Planar Straight Line Graphs and Constrained Delaunay Triangulations

Given that the Delaunay triangulation of a set of vertices maximizes the minimum angle (in two dimensions),
why isn’t the problem of mesh generation solved? There are two reasons, both illustrated in Figure 2.12,
which depicts an input object and a Delaunay triangulation of the object’s vertices. The first reason is that
Delaunay triangulations are oblivious to the boundaries that define an object or problem domain, and these
boundaries may or may not appear in a triangulation. The second reason is that maximizing the minimum
angle usually isn’t good enough; for instance, the bottommost triangle of the triangulation of Figure 2.12 is
quite poor.

Both of these problems can be solved by inserting additional vertices into the triangulation, as illustrated
in Figure 2.13. Chapters 3 and 4 will discuss this solution in detail. Here, however, I review a different
solution to the first problem that requires no additional vertices. Unfortunately, it is only applicable in two
dimensions.

The usual input for two-dimensional mesh generation is not merely a set of vertices. Most theoretical
treatments of meshing take as their input aplanar straight line graph(PSLG). A PSLG is a set of vertices
and segments that satisfies two constraints. First, for each segment contained in a PSLG, the PSLG must
also contain the two vertices that serve as endpoints for that segment. Second, segments are permitted to
intersect only at their endpoints. (A set of segments that does not satisfy this condition can be converted into
a set of segments that does. Run a segment intersection algorithm [24, 85], then divide each segment into
smaller segments at the points where it intersects other segments.)

Theconstrained Delaunay triangulation(CDT) of a PSLGX is similar to the Delaunay triangulation,
but every input segment appears as an edge of the triangulation. An edge or triangle is said to beconstrained
Delaunay if it satisfies the following two conditions. First, its vertices arevisible to each other. Here,
visibility is deemed to be obstructed if a segment ofX lies between two vertices. Second, there exists a
circle that passes through the vertices of the edge or triangle in question, and the circle contains no vertices
of X that are visible from the interior of the edge or triangle.

Segments ofX are also considered to be constrained Delaunay.

Figure 2.14 demonstrates examples of a constrained Delaunay edgee and a constrained Delaunay trian-
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Figure 2.14:The edge e and triangle t are each constrained Delaunay. Bold lines represent segments.

(a) (b) (c)

Figure 2.15:(a) A planar straight line graph. (b) Delaunay triangulation of the vertices of the PSLG. (c)
Constrained Delaunay triangulation of the PSLG.

gle t. Input segments appear as bold lines. Although there is no empty circle that containse, the depicted
containing circle ofe contains no vertices that are visible from the interior ofe. There are two vertices inside
the circle, but both are hidden behind segments. Hence,e is constrained Delaunay. Similarly, the circum-
circle of t contains two vertices, but both are hidden from the interior oft by segments, sot is constrained
Delaunay.

Is this notion of visibility ambiguous? For instance, what if a trianglet has a vertexv in its circumcircle,
and a segments only partly obstructs the view, so thatv is visible from some points int but not others? In
this case, one of the endpoints ofs also lies in the circumcircle oft, sot is unambiguously not constrained
Delaunay. (This argument does not extend to three dimensions, unfortunately, which largely explains why
no consistent definition of constrained Delaunay tetrahedralization has been put forth.)

Figure 2.15 illustrates a PSLG, a Delaunay triangulation of its vertices, and a constrained Delaunay
triangulation of the PSLG. Some of the edges of the CDT are constrained Delaunay but not Delaunay. Take
note: constrained Delaunay triangulations are not necessarily Delaunay triangulations.

Like Delaunay triangulations, constrained Delaunay triangulations can be constructed by the flip algo-
rithm. However, the flip algorithm should begin with a triangulation whose edges include all the segments
of the input PSLG. To show that such a triangulation always exists (assuming the input vertices are not all
collinear), begin with an arbitrary triangulation of the vertices of the PSLG. Examine each input segment
in turn to see if it is missing from the triangulation. Each missing segment is forced into the triangulation
by deleting all the edges it crosses, inserting the new segment, and retriangulating the two resulting poly-
gons (one on each side of the segment), as illustrated in Figure 2.16. (For a proof that any polygon can be
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Figure 2.16:Inserting a segment into a triangulation.

triangulated, see Bern and Eppstein [10].)

Once a triangulation containing all the input segments is found, the flip algorithm may be applied, with
the provision that segments cannot be flipped. The following results may be proven analogously to the
proofs in Section 2.1.1. The only changes that need be made in the proofs is to ignore the presence of
vertices that are hidden behind input segments.

Lemma 7 LetT be a triangulation. If all the triangles ofT are constrained Delaunay, then all the edges of
T are constrained Delaunay, and vice versa. �

Lemma 8 LetT be a triangulation whose unconstrained edges (those that do not represent input segments)
are all locally Delaunay. Then every edge ofT is (globally) constrained Delaunay. �

Lemma 9 Given a triangulation ofn vertices in which all input segments are represented as edges, the
flip algorithm terminates afterO(n2) edge flips, yielding a triangulation whose edges are all constrained
Delaunay. �

Theorem 10 LetX be a PSLG containing three or more vertices that are not all collinear. If no four vertices
ofX are cocircular, the constrained Delaunay triangulation ofX is a triangulation, and is produced by the
flip algorithm. �

Theorem 11 Among all constrained triangulations of a PSLG, the constrained Delaunay triangulation
maximizes the minimum angle, minimizes the largest circumcircle, and minimizes the largest min-contain-
ment circle. �

In the case where an input PSLG has no segments, the constrained Delaunay triangulation reduces to the
Delaunay triangulation. Hence, by proving these results for the CDT, they are also proven for the Delaunay
triangulation. However, I instead presented the simpler proofs for the Delaunay triangulation to aid clarity.

2.1.3 The Delaunay Tetrahedralization

The Delaunay tetrahedralization of a vertex setV is a straightforward generalization of the Delaunay trian-
gulation to three dimensions. An edge, triangular face, or tetrahedron whose vertices are members ofV is
said to beDelaunayif there exists an empty sphere that passes through all its vertices. If no five vertices
are cospherical, the Delaunay tetrahedralization is a tetrahedralization and is unique. If cospherical vertices
are present, it is customary to define the Delaunay tetrahedralization to be a true tetrahedralization. As with
degenerate Delaunay triangulations, a subset of the Delaunay edges, faces, and tetrahedra may have to be
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Figure 2.17:This hexahedron can be tetrahedralized in two ways. The Delaunay tetrahedralization (left)
includes an arbitrarily thin tetrahedron known as a sliver, which could compromise the accuracy of a fi-
nite element simulation. The non-Delaunay tetrahedralization on the right consists of two nicely shaped
elements.

omitted to achieve this, thus sacrificing uniqueness. The definition of Delaunay triangulation generalizes to
dimensions higher than three as well.

I have mentioned that the max-min angle optimality of the two-dimensional Delaunay triangulation, first
shown by Lawson [59], does not generalize to higher dimensions. Figure 2.17 illustrates this unfortunate
fact with a three-dimensional counterexample. A hexahedron is illustrated at top. Its Delaunay tetrahe-
dralization, which appears at lower left, includes a thin tetrahedron known as asliver or kite, which may
have dihedral angles arbitrarily close to0� and180�. A better quality tetrahedralization of the hexahedron
appears at lower right.

Edge flips, discussed in Section 2.1.1, have a three-dimensional analogue, which toggles between these
two tetrahedralizations. There are two types of flips in three dimensions, both illustrated in Figure 2.18. A
2-3 flip transforms the two-tetrahedron configuration into the three-tetrahedron configuration, eliminating
the face4cde and inserting the edgeab and three triangular faces connectingab to c, d, ande. A 3-2 flip is
the reverse transformation, which deletes the edgeab and inserts the face4cde.

Recall from Figure 2.6 that a two-dimensional edge flip is not possible if the containing quadrilateral of
an edge is not strictly convex. Similarly, a three-dimensional flip is not possible if the containing hexahedron
of the edge or face being considered for elimination is not strictly convex. A 2-3 flip is prevented if the line
ab does not pass through the interior of the face4cde. A 3-2 flip is prevented if4cde does not pass through
the interior of the edgeab (Figure 2.18, bottom).

Although the idea of a flip generalizes to three or more dimensions, the flip algorithm in its simplest
form does not. Joe [52] gives an example that demonstrates that if the flip algorithm starts from an arbi-
trary tetrahedralization, it may become stuck in a local optimum, producing a tetrahedralization that is not
Delaunay. The tetrahedralization may contain a locally non-Delaunay face that cannot be flipped because
its containing hexahedron is not convex, or a locally non-Delaunay edge that cannot be flipped because it is
contained in more than three tetrahedra.

It is not known whether an arbitrary tetrahedralization can always be transformed into another arbitrary
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Figure 2.18:Flips in three dimensions. The two-tetrahedron configuration (left) can be transformed into the
three-tetrahedron configuration (right) only if the line ab passes through the interior of the triangular face
4cde. The three-tetrahedron configuration can be transformed into the two-tetrahedron configuration only
if the plane containing 4cde passes through the interior of the edge ab.

tetrahedralization of the same vertex set through a sequence of flips. Nevertheless, Delaunay tetrahedraliza-
tions can be constructed by an incremental insertion algorithm based on flips, discussed in Section 2.1.4.

Any algorithm based on flips in dimensions greater than two must give some consideration to the pos-
sibility of coplanar vertices. For instance, a three-dimensional flip-based incremental Delaunay tetrahedral-
ization algorithm must be able to explicitly or implicitly perform the4-4 flip demonstrated in Figure 2.19.
This transformation is handy when the verticesc, d, e, andf are coplanar. This flip is directly analogous to
the two-dimensional edge flip, wherein the edgedf is replaced by the edgece. 4-4 flips are used often in
cases wherec, d, e, andf lie on an interior boundary facet of an object being meshed. One should be aware
of the special case wherec, d, e, andf lie on an exterior boundary, and the top two tetrahedra, as well as the
vertexa, are missing. One might refer to this case as a 2-2 flip.

A programmer does not need to implement the 4-4 flip directly, because its effect can be duplicated
by performing a 2-3 flip (for instance, on tetrahedraacdf andadef ) followed by a 3-2 flip. However, this
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Figure 2.19:A 4-4 flip. The vertices c, d, e, and f are coplanar. This transformation is analogous to the
two-dimensional edge flip (bottom).

sequence transiently creates a sliver tetrahedroncdef (created by the first flip and eliminated by the second)
with zero volume, which may be considered undesirable. It is up to the individual programmer to decide
how best to address this issue.

Although Delaunay tetrahedralizations are invaluable for three-dimensional mesh generation, they are
in many ways more limited than their two-dimensional brethren. The first difficulty is that, whereas every
polygon can be triangulated (without creating additional vertices), there are polyhedra that cannot be tetrahe-
dralized. Sch¨onhardt furnishes an example depicted in Figure 2.20 (right). The easiest way to envision this
polyhedron is to begin with a triangular prism. Imagine grasping the prism so that one of its two triangular
faces cannot move, while the opposite triangular face is rotated slightly about its center without moving out
of its plane. As a result, each of the three square faces is broken along a diagonalreflex edge(an edge at
which the polyhedron is locally concave) into two triangular faces. After this transformation, the upper left
corner and lower right corner of each (former) square face are separated by a reflex edge and are no longer
visible to each other through the interior of the polyhedron. Hence, no vertex of the top face can see all three
vertices of the bottom face. It is not possible to choose four vertices of the polyhedron that do not include
two separated by a reflex edge; thus, any tetrahedron whose vertices are vertices of the polyhedron will not
lie entirely within the polyhedron. Sch¨onhardt’s polyhedron cannot be tetrahedralized without inserting new
vertices.

Nevertheless, any convex polyhedron can be tetrahedralized. However, it is not always possible to
tetrahedralize a convex polyhedron in a manner that conforms to interior boundaries, because those interior
boundaries could be the facets of Sch¨onhardt’s polyhedron. Hence, constrained tetrahedralizations do not
always exist. What if we forbid constrained facets, but permit constrained segments? Figure 2.21 illustrates
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Figure 2.20:Schönhardt’s untetrahedralizable polyhedron (right) is formed by rotating one end of a triangu-
lar prism (left), thereby creating three diagonal reflex edges.

Figure 2.21:A set of vertices and segments for which there is no constrained tetrahedralization.

a set of vertices and segments for which a constrained tetrahedralization does not exist. (The convex hull, a
cube, is illustrated for clarity, but no constrained facets are present in the input.) Three orthogonal segments
pass by each other near the center of the cube, but do not intersect. If any one of these segments is omitted,
a tetrahedralization is possible. Hence, unlike the two-dimensional case, it is not always possible to insert a
new segment into a tetrahedralization.

Even in cases where a constrained tetrahedralization does exist, nobody has yet put forth a convincing
definition ofconstrained Delaunay tetrahedralization. It seems unlikely that there exists a definition that has
the desired qualities of uniqueness, symmetry, and rotational invariance (in nondegenerate cases). This dif-
ficulty arises because, whereas a segment cleanly partitions a circumcircle in two dimensions, except when
an endpoint of the segment lies in the circle, segments and facets do not necessarily partition circumspheres
in three dimensions.

Another nail in the coffin of constrained tetrahedralizations comes from Ruppert and Seidel [83], who
show that the problem of determining whether or not a polyhedron can be tetrahedralized without additional
vertices is NP-complete. Hence, the prospects for developing constrained tetrahedralization algorithms that
consistently recover boundaries are pessimistic.

The mesh generation algorithm discussed in Chapter 4 recovers boundaries by strategically inserting
additional vertices. Unfortunately, Ruppert and Seidel also show that the problem of determining whether a
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Figure 2.22:The Bowyer/Watson algorithm in two dimensions. When a new vertex is inserted into a trian-
gulation (left), all triangles whose circumcircles contain the new vertex are deleted (center; deleted triangles
are shaded). Edges are created connecting the new vertex to the vertices of the insertion polyhedron (right).

polyhedron can be tetrahedralized with onlyk additional vertices is NP-complete. On the bright side, Bern
and Eppstein [10] show that any polyhedron can be tetrahedralized with the insertion ofO(n2) additional
vertices, so the demands of tetrahedralization are not limitless.

2.1.4 Algorithms for Constructing Delaunay Triangulations

Three types of algorithms are in common use for constructing Delaunay triangulations. The simplest are
incremental insertion algorithms, which have the advantage of generalizing to arbitrary dimensionality, and
will be discussed in some depth here. In two dimensions, there are faster algorithms based upon divide-and-
conquer and sweepline techniques, which will be discussed here only briefly. Refer to Su and Drysdale [91,
90] for an informative overview of these and other two-dimensional Delaunay triangulation algorithms. The
discussion below is centered on abstract features of the algorithms; see Section 5.1 for further details on
implementation.

Incremental insertion algorithms operate by maintaining a Delaunay triangulation, into which vertices
are inserted one at a time. The earliest such algorithm, introduced by Lawson [59], is based upon edge flips.
An incremental algorithm that does not use edge flips, and has the advantage of generalizing to arbitrary
dimensionality, was introduced simultaneously by Bowyer [12] and Watson [93]. These two articles appear
side-by-side in a single issue of the Computer Journal1. I will examine the Bowyer/Watson algorithm first,
and then return to the algorithm of Lawson.

In the Bowyer/Watson algorithm, when a new vertex is inserted, each triangle whose circumcircle con-
tains the new vertex is no longer Delaunay, and is thus deleted. All other triangles remain Delaunay, and are
left undisturbed. The set of deleted triangles collectively form aninsertion polyhedron, which is left vacant
by the deletion of these triangles, as illustrated in Figure 2.22. The Bowyer/Watson algorithm connects each
vertex of the insertion polyhedron to the new vertex with a new edge. These new edges are Delaunay due to
the following simple lemma.

Lemma 12 Letv be a newly inserted vertex, and letw be a vertex of a trianglet that is deleted because its
circumcircle containsv. Thenvw is Delaunay.

Proof: See Figure 2.23. The circumcircle oft contains no vertex butv. Let C be the circle that passes
throughv andw, and is tangent to the circumcircle oft atw. C is empty, sovw is Delaunay. �

1The two algorithms are similar in all essential details, but Bowyer reports a better asymptotic running time than Watson, which
on close inspection turns out to be nothing more than an artifact of his more optimistic assumptions about the speed of point
location.
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Figure 2.23:If v is a newly inserted vertex, and w is a vertex of a triangle t whose circumcircle contains
only v, then vw is Delaunay.

Figure 2.24:The Bowyer/Watson algorithm in three dimensions. At left, a new vertex falls inside the cir-
cumspheres of the two tetrahedra illustrated. (These tetrahedra may be surrounded by other tetrahedra,
which for clarity are not shown.) These tetrahedra are deleted, along with the face (shaded) between them.
At center, the five new Delaunay edges (bold dashed lines). At right, the nine new Delaunay faces (one for
each edge of the insertion polyhedron) are drawn translucent. Six new tetrahedra are formed.

All new edges created by the insertion of a vertexv havev as an endpoint. This must be true of any
correct incremental insertion algorithm, because if an edge (not havingv as an endpoint) is not Delaunay
beforev is inserted, it will not be Delaunay afterv is inserted.

The Bowyer/Watson algorithm extends in a straightforward way to three (or more) dimensions. When
a new vertex is inserted, every tetrahedron whose circumsphere contains the new vertex is deleted, as illus-
trated in Figure 2.24. The new vertex then floats inside a hollowinsertion polyhedron, which is the union
of the deleted tetrahedra. Each vertex of the insertion polyhedron is connected to the new vertex with a new
edge. Each edge of the insertion polyhedron is connected to the new vertex with a new triangular face.

In its simplest form, the Bowyer/Watson algorithm is not robust against floating-point roundoff error.
Figure 2.25 illustrates a degenerate example in which two triangles have the same circumcircle, but due to
roundoff error only one of them is deleted, and the triangle that remains stands between the new vertex and
the other triangle. The insertion polyhedron is not simple, and the triangulation that results after the new
triangles are added is nonsensical.

In two dimensions, this problem may be avoided by returning to Lawson’s algorithm [59], which is
based upon edge flips. Lawson’s algorithm is illustrated in Figure 2.26.

When a vertex is inserted, the triangle that contains it is found, and three new edges are inserted to
attach the new vertex to the vertices of the containing triangle. (If the new vertex falls upon an edge of the
triangulation, that edge is deleted, and four new edges are inserted to attach the new vertex to the vertices
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Figure 2.25:The Bowyer/Watson algorithm may behave nonsensically under the influence of floating-point
roundoff error.

Figure 2.26:Lawson’s incremental insertion algorithm uses edge flipping to achieve the same result as the
Bowyer/Watson algorithm.

of the containing quadrilateral.) Next, a recursive procedure tests whether the new vertex lies within the
circumcircles of any neighboring triangles; each affirmative test triggers an edge flip that removes a locally
non-Delaunay edge. Each edge flip reveals two additional edges that must be tested. When there are no
longer any locally non-Delaunay edges opposite the new vertex, the triangulation is globally Delaunay.

Disregarding roundoff error, Lawson’s algorithm achieves exactly the same result as the Bowyer/Watson
algorithm. In the presence of roundoff error, Lawson’s algorithm avoids the catastrophic circumstance
illustrated in Figure 2.25. Lawson’s algorithm is not absolutely robust against roundoff error, but failures
are rare compared to the most na¨ıve form of the Bowyer/Watson algorithm. However, the Bowyer/Watson
algorithm can be implemented to behave equally robustly; for instance, the insertion polygon may be found
by depth-first search from the initial triangle.

A better reason for noting Lawson’s algorithm is that it is slightly easier to implement, in part because the
topological structure maintained by the algorithm remains a triangulation at all times. Guibas and Stolfi [47]
provide a particularly elegant implementation.

Joe [53, 54] and Rajan [78] have generalized Lawson’s flip-based algorithm to arbitrary dimensionality.
Of course, these algorithms have the same effect as the Bowyer/Watson algorithm, but may present the same
advantages for implementation that Lawson’s algorithm offers in two dimensions.

I do not review the mathematics underpinning three-dimensional incremental insertion based on flips,
but I shall try to convey some of the intuition behind it. Returning first to the two-dimensional algorithm,
imagine yourself as an observer standing at the newly inserted vertex. From your vantage point, suppose
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Figure 2.27:Left: The shaded triangles are considered to be visible from the new vertex, and are considered
for removal (by edge flip). Right: Triangles under consideration for removal fall into two categories. The
upper right triangle has an apex (open circle) visible through its base edge e from the new vertex. Only one
of this triangle’s sides faces the new vertex. The lower right triangle has an apex (the same open circle)
that is not visible through its base edge e0, and thus the base edge cannot be flipped. Two of this triangle’s
sides face the new vertex.

that any triangle (not adjoining the new vertex) is visible to you if it might be eligible for removal by the
next edge flip. These triangles are shaded in Figure 2.27.

For each such triangle, there are two cases. The apex of the triangle (the vertex hidden from your view)
may or may not fall within the sector of your vision subtended by the base edge of the triangle. If the apex
falls within this sector, then only the base edge of the triangle faces toward you; the other two sides face
away (see the upper right triangle of Figure 2.27). If the apex falls outside this sector, then two sides of the
triangle face toward you (see the lower right triangle of Figure 2.27). In the latter case, the base edge cannot
be flipped, because its containing quadrilateral is not strictly convex.

Returning to the three-dimensional case, imagine yourself as a vertex that has just been inserted inside
a tetrahedron, splitting it into four tetrahedra. As you look around, you see the four faces of the original
tetrahedron, and the neighbor tetrahedra behind these faces (which are analogous to the shaded triangles in
Figure 2.27).

For each neighbor tetrahedron, there are three possibilities. The tetrahedron might have one face directed
toward you and three away (Figure 2.28, left), in which case a 2-3 flip is possible. If performed, this flip
deletes the visible face, revealing the three back faces, and creates a new edge extending from the new vertex
(your viewpoint) to the newly revealed vertex in the back. The flip also creates three new faces, extending
from the new vertex to the three newly revealed edges.

If the tetrahedron has two faces directed toward you (Figure 2.28, center), and neither face is obscured by
an interposing tetrahedron, a 3-2 flip is possible. If performed, this flip deletes both visible faces, revealing
the two back faces. A new face is created, extending from the new vertex to the newly revealed edge.

If the tetrahedron has three faces directed toward you (Figure 2.28, right), no flip is possible.

I have omitted the degenerate case in which you find yourself precisely coplanar with one face of the
tetrahedron, with one other face directed toward you and two directed away. This circumstance would appear
similar to the upper left image of Figure 2.28, but withd directly behind the edgeab. If the new vertex falls
within the circumcircle of the face4abd, thenabcd is no longer Delaunay, and the aforementioned 4-4 flip
may be used, thus eliminating both tetrahedra adjoining4abd.

Each flip uncovers two to four new faces, possibly leading to additional flips.

This discussion of incremental insertion algorithms in two and three dimensions has assumed that all
new vertices fall within the existing triangulation. What if a vertex falls outside the convex hull of the
previous vertices? One solution is to handle this circumstance as a special case. New triangles or tetrahedra
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Figure 2.28:Three orientations of a tetrahedron as viewed from a newly inserted vertex p. Left: One face
of tetrahedron abcd is directed toward p. If abcd is no longer Delaunay, a 2-3 flip deletes the face 4abc,
replacing the tetrahedra abcd and abcp with abdp, bcdp, and cadp. Center: Two faces of tetrahedron efgh
are directed toward p. If neither face is obscured by another tetrahedron, and efgh is no longer Delaunay,
a 3-2 flip deletes the edge eg and faces 4egf , 4egh, and 4egp, replacing the tetrahedra efgh, efgp, and
ghep with fghp and hefp. Right: Three faces of a tetrahedron are directed toward p. No flip is possible.

are created to connect the new vertex to all the edges or faces of the convex hull visible from that vertex.
Then, flipping may proceed as usual. An alternative solution that simplifies programming is to bootstrap
incremental insertion with a very large triangular or tetrahedral bounding box that contains all the input
vertices. After all vertices have been inserted, the bounding box is removed as a postprocessing step. The
problem with this approach is that one must be careful to choose the vertices of the bounding box so that
they do not cause triangles or tetrahedra to be missing from the final Delaunay triangulation.

Assuming that one has found the triangle or tetrahedron in which a new vertex is to be inserted, the
amount of work required to insert the vertex is proportional to the number of flips, which is typically small.
Pathological cases can occur in which a single vertex insertion causesO(n) flips in two dimensions, or
O(n2) in three; but such cases arise rarely in mesh generation, and it is common to observe that the average
number of flips per insertion is a small constant.

In two dimensions, this observation is given some support by a simple theoretical result. Suppose one
wishes to construct, using Lawson’s algorithm, the Delaunay triangulation of a set of vertices that is entirely
known at the outset. If the input vertices are inserted in a random order, chosen uniformly from all possible
permutations, then the expected number of edge flips per vertex insertion is bounded below three.

This elegant result seems to originate with Chew [20], albeit in the slightly simpler context of Delaunay
triangulations of convex polygons. This result was proven more generally by Guibas, Knuth, and Sharir [46],
albeit with a much more complicated proof than Chew’s. The result is based on the observation that when a
vertex is inserted, each edge flip increases by one the degree of the new vertex. Hence, if the insertion of a
vertex causes four edge flips, there will be seven edges incident to that vertex. (The first three edges connect
the new vertex to the vertices of the triangle in which it falls, and the latter four are created through edge
flips.)

Here, the technique ofbackward analysisis applied. The main principle of backward analysis is that
after an algorithm terminates, one imagines reversing time and examining the algorithm’s behavior as it
runs backward to its starting state. In the case of Lawson’s algorithm, one begins with a complete Delaunay
triangulation of all the input vertices, and removes one vertex at a time.
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Figure 2.29:The algorithm of Guibas, Knuth, and Sharir maintains a mapping between uninserted vertices
(open circles) and triangles. The bounding box vertices and the edges incident to them are not shown.

The power of backward analysis stems from the fact that a uniformly chosen random permutation read
backward is still a uniformly chosen random permutation. Hence, one may imagine that triangulation ver-
tices are being randomly selected, one at a time from a uniform distribution, for removal from the trian-
gulation. With time running backward, the amount of time spent removing a vertex from the triangulation
is proportional to the degree of the vertex. Because the average degree of vertices in a planar graph is
bounded below six, the expected number of edge flips observed when a randomly chosen vertex is removed
is bounded below three.

Hence, when Lawson’s algorithm is running forward in time, the expected number of edge flips required
to insert a vertex is at most three. Unfortunately, this result is not strictly applicable to most Delaunay-based
mesh generation algorithms, because the entire set of vertices is not known in advance, and thus the vertex
insertion order cannot be randomized. Nevertheless, the result gives useful intuition for why constant-time
vertex insertion is so commonly observed in mesh generation.

Unfortunately, when finding the Delaunay triangulation of an arbitrary set of vertices, edge flips are not
the only cost. In many circumstances, the dominant cost is the time required forpoint location: finding
the triangle or tetrahedron in which a vertex lies, so that the vertex may be inserted. Fortunately, most
Delaunay-based mesh generation algorithms insert most of their vertices in places that have already been
identified as needing refinement, and thus the location of each new vertex is already known. However, in a
general-purpose Delaunay triangulator, point location is expensive.

In two dimensions, point location can be performed in expected amortizedO(log n) time per vertex,
wheren is the number of vertices in the mesh. Clarkson and Shor [24] were the first to achieve this bound,
again by inserting the vertices in random order. Clarkson and Shor perform point location by maintaining
a conflict graph, which is a bipartite graph that associates edges of the triangulation with vertices that have
not yet been inserted. Specifically, the conflict graph associates each uninserted vertex with the edges of
that vertex’s insertion polygon (including triangulation edges in the interior of the insertion polygon). The
conflict graph is updated with each vertex insertion.

Rather than explain the Clarkson and Shor algorithm in detail, I present a simpler variant due to Guibas,
Knuth, and Sharir [46]. For simplicity, assume that a large bounding box is used to contain the input vertices.
One version of the algorithm of Guibas et al. maintains a simpler conflict graph in which each uninserted
vertex is associated with the triangle that contains it (Figure 2.29, left). If a vertex lies on an edge, either
containing triangle is chosen arbitrarily.

When a triangle is divided into three triangles (Figure 2.29, center) or an edge is flipped (Figure 2.29,
right), the vertices in the deleted triangle(s) are redistributed among the new triangles as dictated by their
positions. When a vertex is chosen for insertion, its containing triangle is identified by using the conflict
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graph. The dominant cost of the algorithm is the cost of redistributing uninserted vertices to their new
containing triangles each time a vertex is inserted.

Although Clarkson and Shor [24] and Guibas et al. [46] both provide ways to analyze this algorithm,
the simplest analysis originates with Kenneth Clarkson and is published in a report by Seidel [85]. Here I
give a rough sketch of the proof, which relies on backward analysis. Suppose the Delaunay triangulation
of n vertices is being constructed. Consider the step wherein a(p � 1)-vertex triangulation is converted
into ap-vertex triangulation by inserting a randomly chosen vertex; but consider running the step in reverse.
In the backward step, a random vertexv of the p-vertex triangulation is chosen for deletion. What is the
expected number of vertices that are redistributed? Each triangle of the triangulation has three vertices,
so the probability that any given triangle is deleted whenv is deleted is3p . (The probability is actually

slightly smaller, because some triangles have vertices of the bounding box, but3
p is an upper bound.) If

a triangle is deleted, all vertices assigned to that triangle are redistributed. Each of then � p uninserted
vertices is assigned to exactly one triangle; so by linearity of expectation, the expected number of vertices
redistributed whenv is deleted (or, if time is running forward, inserted) is3(n�p)p . Hence, the running time

of the algorithm is
Pn

p=1
3(n�p)

p 2 O(n log n).

The same analysis technique can be used, albeit with complications, to show that incremental Delaunay
triangulation in higher dimensions can run in randomizedO(ndd=2e) time. Consult Seidel [85] for details.

The firstO(n logn) algorithm for two-dimensional Delaunay triangulation was not an incremental algo-
rithm, but a divide-and-conquer algorithm. Shamos and Hoey [86] developed an algorithm for the construc-
tion of a Voronoi diagram, which may be easily dualized to form a Delaunay triangulation. In programming
practice, this is an unnecessarily difficult procedure, because forming a Delaunay triangulation directly is
much easier, and is in fact the easiest way to construct a Voronoi diagram. Lee and Schachter [60] were the
first to publish a divide-and-conquer algorithm that follows this easier path. The algorithm is nonetheless
intricate, and Guibas and Stolfi [47] provide an important aid to programmers by filling out many tricky
implementation details. Dwyer [30] offers an interesting modification to divide-and-conquer Delaunay tri-
angulation that achieves better asymptotic performance on some vertex sets, and offers improved speed
in practice as well. There is also anO(n logn) algorithm for constrained Delaunay triangulations due to
Chew [18]. Divide-and-conquer Delaunay triangulation is discussed further in Section 5.1.

Another well-knownO(n log n) two-dimensional Delaunay triangulation algorithm is Fortune’s sweep-
line algorithm [31].

2.2 Research in Mesh Generation

The discussion in this chapter has heretofore been concerned with triangulations of complete vertex sets. Of
course, a mesh generator rarely knows all the vertices of the final mesh prior to triangulation, and the real
problem of meshing is deciding where to place vertices to ensure that the mesh has elements of good quality
and proper sizes.

I attempt here only the briefest of surveys of mesh generation algorithms. Detailed surveys of the mesh
generation literature have been supplied by Thompson and Weatherill [92] and Bern and Eppstein [10]. I
focus my attention on algorithms that make use of Delaunay triangulations, and on algorithms that achieve
provable bounds. I postpone three algorithms, due to L. Paul Chew and Jim Ruppert, that share both these
characteristics. They are described in detail in Chapter 3.

Only simplicial mesh generation algorithms are discussed here; algorithms for generating quadrilateral,
hexahedral, or other non-simplicial meshes are omitted. The most popular approaches to triangular and
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tetrahedral mesh generation can be divided into three classes: Delaunay triangulation methods, advancing
front methods, and methods based on grids, quadtrees, or octrees.

2.2.1 Delaunay Mesh Generation

It is difficult to trace who first used Delaunay triangulations for finite element meshing, and equally difficult
to tell where the suggestion arose to use the triangulation to guide vertex creation. These ideas have been
intensively studied in the engineering community since the mid-1980s, and began to attract interest from the
computational geometry community in the early 1990s.

I will name only a few scattered references from the voluminous literature. Many of the earliest papers
suggest performing vertex placement as a separate step, typically using structured grid techniques, prior to
Delaunay triangulation. For instance, Cavendish, Field, and Frey [17] generate grids of vertices from cross-
sections of a three-dimensional object, then form their Delaunay tetrahedralization. The idea of using the
triangulation itself as a guide for vertex placement followed quickly; for instance, Frey [41] removes poor
quality elements from a triangulation by inserting new vertices at theircircumcenters—the centers of their
circumcircles—while maintaining the Delaunay property of the triangulation. This idea went on to bear
vital theoretical fruit, as Chapters 3 and 4 will demonstrate.

I have mentioned that the Delaunay triangulation of a vertex set may be unsatisfactory for two reasons:
elements of poor quality may appear, and input boundaries may fail to appear. Both these problems have
been treated in the literature. The former problem is typically treated by inserting new vertices at the
circumcenters [41] or centroids [94] of poor quality elements. It is sometimes also treated with an advancing
front approach, discussed briefly in Section 2.2.2.

The problem of the recovery of missing boundaries may be treated in several ways. These approaches
have in common that boundaries may have to be broken up into smaller pieces. For instance, each input
segment is divided into a sequence of triangulation edges which I callsubsegments, with a vertex inserted
at each division point. In three dimensions, each facet of an object to be meshed is divided into triangular
faces which I callsubfacets. Vertices of the tetrahedralization lie at the corners of these subfacets.

In the earliest publications, boundary integrity was assured simply by spacing vertices sufficiently
closely together on the boundary prior to forming a triangulation [41]—surely an error-prone approach.
A better way to ensure the presence of input segments is to first form the triangulation, and then check
whether any input segments are missing.

Missing segments can be recovered by one of several methods, which work in two or three dimensions.
One method inserts a new vertex (while maintaining the Delaunay property of the mesh) at the midpoint
of any missing segment, splitting it into two subsegments [94]. Sometimes, the two subsegments appear
as edges of the resulting triangulation. If not, the subsegments are recursively split in turn. This method,
sometimes calledstitching, is described in more detail in Section 3.3.1. Although it is not obvious how this
method might generalize to three-dimensional facet recovery, I will demonstrate in Section 4.2.1 that this
generalization is possible and has some advantages over the next method I describe.

Another method, usually only used in three dimensions, can be applied to recover both missing segments
and missing facets. This method inserts a new vertex wherever a face or edge of the triangulation intersects
a missing segment or facet [95, 48, 96, 79]. The method is often coupled with flips [43, 95], which are used
to reduce the number of vertices that must be inserted. The pessimistic results on constrained tetrahedral-
izations in Section 2.1.3 imply that, in three dimensions, flips cannot always achieve boundary recovery on
their own; in some cases, new vertices must inevitably be inserted to fully recover a boundary.

Boundary recovery methods will be discussed further in Sections 3.3.1, 4.2.1, and 5.3.1.
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Figure 2.30:Several stages in the progression of an advancing front algorithm.

2.2.2 Advancing Front Methods

Advancing frontmethods [62, 6, 51, 64] begin by dividing the boundaries of the mesh into edges (in two
dimensions) or triangular faces (in three). These discretized boundaries form the initialfront. Triangles or
tetrahedra are generated one-by-one, starting from the boundary edges or faces, and work toward the center
of the region being meshed, as illustrated in Figure 2.30. The inner surface of these elements collectively
form anadvancing front.

Advancing front methods require a good deal of second-guessing, first to ensure that the initial division
of the boundaries is prudent, and second to ensure that when the advancing walls of elements collide at
the center of the mesh, they are merged together in a manner that does not compromise the quality of the
elements. In both cases, a poor choice of element sizes may result in disaster, as when a front of small
elements collides with a front of large elements, making it impossible to fill the space between with nicely
shaped elements. These problems are sufficiently difficult that there are, to my knowledge, no provably
good advancing front algorithms. Advancing front methods typically create astonishingly good triangles or
tetrahedra near the boundaries of the mesh, but are much less effective where fronts collide.

In three dimensions, generating the surface mesh may be a difficult problem itself. Ironically, the mesh
generator described by Marcum and Weatherill [63] uses a Delaunay-based mesh generator to create a
complete tetrahedralization, then throws away the tetrahedralization except for the surface mesh, which is
used to seed their advancing front algorithm.

Mavriplis [64] combines the Delaunay triangulation and advancing front methods. The combination
makes a good deal of sense, because a Delaunay triangulation in the interior of the mesh is a useful search
structure for determining how close different fronts are to each other. (Some researchers use background
grids for this task.) Conversely, the advancing front method may be used as a vertex placement method
for Delaunay meshing. A sensible strategy might be to abandon the advancing front shortly before fronts
collide, and use a different vertex placement strategy (such as inserting vertices at circumcenters or centroids
of poor quality elements) in the center of the mesh, where such strategies tend to be most effective.

Figure 2.31 depicts one of the world’s most famous meshes, generated by an advancing front method
of Barth and Jesperson [9]. The mesh is the Delaunay triangulation of vertices placed by a procedure
moving outward from this airfoil. Of course, the problems associated with colliding fronts are reduced in
circumstances like this, where one is meshing the exterior, rather than the interior, of an object.

2.2.3 Grid, Quadtree, and Octree Methods

The last decade has seen the emergence of mesh generation algorithms with provably good bounds.

Baker, Grosse, and Rafferty [5] gave the first algorithm to triangulate PSLGs with guaranteed upper
and lower bounds on element angle. By placing a fine uniform grid over a PSLG, warping the edges of the
grid to fit the input segments and vertices, and triangulating the warped grid, they are able to construct a
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Figure 2.31:Mesh produced by an advancing front, moving outward from an airfoil.

(a) (b)

Figure 2.32:(a) A quadtree. (b) A quadtree-based triangulation of a vertex set, with no angle smaller than
20� (courtesy Marshall Bern).

triangular mesh whose angles are bounded between13� and90� (except where the input PSLG has angles
smaller than13�; these cannot be improved). The elements of the mesh are of uniform size.

To produce graded meshes, some researchers have turned toquadtrees. A quadtree is a recursive data
structure used to efficiently manipulate multiscale geometric objects in the plane. Quadtrees recursively par-
tition a region into axis-aligned squares. A top-level square called theroot encloses the entire input PSLG.
Each quadtree square can be divided into fourchild squares, which can be divided in turn, as illustrated in
Figure 2.32(a).Octreesare the generalization of quadtrees to three dimensions; each cube in an octree can
be subdivided into eight cubes. See Samet [84] for a survey of quadtree data structures.

Meshing algorithms based on quadtrees and octrees have been used extensively in the engineering com-
munity for over a decade [98, 99, 87]. Their first role in mesh generation with provable bounds appears in
a paper by Bern, Eppstein, and Gilbert [11]. The Bern et al. algorithm triangulates a polygon with guaran-
teed bounds on both element quality and the number of elements produced. All angles (except small input
angles) are greater than roughly18:4�, and the mesh is size-optimal (as defined in Section 1.4). The angle
bound applies to triangulations of polygons with polygonal holes, but cannot be extended to general PSLGs,
as Section 3.6 will show. Figure 2.32(b) depicts a mesh generated by one variant of the Bern et al. algorithm.
For this illustration, a set of input vertices was specified (with no constraining segments), and a mesh was
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Figure 2.33:Two meshes generated by Stephen Vavasis’ QMG package, an octree-based mesh generator
with provable bounds. (Meshes courtesy Stephen Vavasis.)

generated (adding a great many additional vertices) that accommodates the input vertices and has no angle
smaller than20�. Figure 3.7 (top) on Page 47 depicts a mesh of a polygon with holes.

The algorithm of Bern et al. works by constructing a quadtree that is dense enough to isolate each input
feature (vertex or segment) from other features. Next, the quadtree is warped to coincide with input vertices
and segments. (Warping changes the shape of the quadtree, but not its topology.) Finally, the squares are
triangulated.

Neugebauer and Diekmann [73] have improved the results of Bern et al., replacing the square quadtree
with a rhomboid quadtree so that the triangles of the final mesh tend to be nearly equilateral. Assuming
there are no small input angles, polygonal domains with polygonal holes and isolated interior points can be
triangulated with all angles between30� and90�.

Remarkably, provably good quadtree meshing has been extended to polyhedra of arbitrary dimen-
sionality. Mitchell and Vavasis [69, 70] have developed an algorithm based on octrees (and their higher-
dimensional brethren) that triangulates polyhedra, producing size-optimal meshes with guaranteed bounds
on element aspect ratios. The generalization to more than two dimensions is quite intricate, and the theoreti-
cal bounds on element quality are not strong enough to be entirely satisfying in practice. Figure 2.33 depicts
two meshes generated by Vavasis’ QMG mesh generator. The mesh at left is quite good, whereas the mesh
at right contains some tetrahedra of marginal quality, with many small angles visible on the surface.

In practice, the theoretically good mesh generation algorithms of Bern, Eppstein, and Gilbert [11] and
Mitchell and Vavasis [69] often create an undesirably large number of elements. Although both algorithms
are size-optimal, the constant hidden in the definition of size-optimality is large, and although both algo-
rithms rarely create as many elements as their theoretical worst-case bounds suggest, they typically create
too many nonetheless. In contrast, the Finite Octree mesh generator of Shephard and Georges [87] gener-
ates fewer tetrahedra, but offers no guarantee. Shephard and Georges eliminate poor elements, wherever
possible, through mesh smoothing, described below.
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Figure 2.34:A selection of topological local transformations. Each node is labeled with its degree. These
labels represent ideal cases, and are not the only cases in which these transformations would occur.

2.2.4 Smoothing and Topological Transformations

All the algorithms discussed thus far have the property that once they have decided to insert a vertex, the
vertex is rooted permanently in place. In this section, I discuss techniques that violate this permanence.
These are not mesh generation methods; rather, they are mesh improvement procedures, which may be
applied to a mesh generated by any of the methods discussed heretofore.

Smoothingis a technique wherein mesh vertices are moved to improve the quality of the adjoining
elements. No changes are made to the topology of the mesh. Of course, vertices that lie in mesh boundaries
may be constrained so that they can only move within a segment or facet, or they may be unable to move at
all.

The most famous smoothing technique isLaplacian smoothing, in which a vertex is moved to the cen-
troid of the vertices to which it is connected [49], if such a move does not create collapsed or inverted
elements. Typically, a smoothing algorithm will run through the entire set of mesh vertices several times,
smoothing each vertex in turn. Laplacian smoothing is reasonably effective in two dimensions, but performs
poorly in three.

Were Laplacian smoothing not so easy to implement and so fast to execute, it would be completely ob-
solete. Much better smoothing algorithms are available, based on constrained optimization techniques [75].
The current state of the art is probably the nonsmooth optimization algorithm discussed by Freitag, Jones,
and Plassman [38] and Freitag and Ollivier-Gooch [39, 40]. The latter authors report considerable success
with a procedure that maximizes the minimum sine of the dihedral angles of the tetrahedra adjoining the
vertex being smoothed.

Another approach to mesh improvement is to use thetopological transformationsoutlined by Canann
[14], which are similar to ideas proposed by Frey and Field [42]. Examples of some transformations are
illustrated in Figure 2.34. The familiar edge flip is included, but the other transformations have the effect
of inserting or deleting a vertex. An unusual aspect of Canann’s approach is that he applies transformations
based on the topology, rather than the geometry, of a mesh. In two dimensions, the ideal degree of a vertex
is presumed to be six (to echo the structure of a lattice of equilateral triangles), and transformations are
applied in an attempt to bring the vertices of the mesh as close to this ideal as possible. Canann claims that
his method is fast because it avoids geometric calculations and makes decisions based on simple topological
measures. The method relies upon smoothing to iron out any geometric irregularities after the transforma-
tions are complete. The research is notable because of the unusually large number of transformations under
consideration.
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Figure 2.35:Tire incinerator mesh before and after mesh improvement. Shaded tetrahedra have dihedral
angles smaller than 18� or greater than 162�. (Courtesy Lori Freitag and Carl Ollivier-Gooch.)

Other researchers have considered mixing smoothing with topological transformations, but typically
consider only a limited set of transformations, often restricted to 2-3 and 3-2 flips. For instance, Golias
and Tsiboukis [45] report obtaining good results in tetrahedral mesh improvement by alternating between
Laplacian smoothing and flipping.

A more sophisticated approach is taken by Freitag and Ollivier-Gooch [39, 40], who combine optimi-
zation-based smoothing with several transformations, including 2-3 and 3-2 flips, as well as another set of
transformations they refer to as “edge swapping”. Figure 2.35 demonstrates the results obtained by these
techniques. In these before-and-after images, tetrahedra with poor dihedral angles are shaded. Before mesh
improvement, the dihedral angles range from0:66� to 178:88�. Afterward, they range from13:67� to
159:82�.

As Delaunay tetrahedralizations lack the optimality properties of their two-dimensional counterparts, it
is natural to ask whether one should forgo the Delaunay criterion, and instead use flips to directly maximize
the minimum solid angle. Joe [52] studies this question experimentally, and concludes that a procedure that
performs local flips to locally optimize the minimum solid angle is notably inferior to the Delaunay tetra-
hedralization. However, if one first constructs the Delaunay tetrahedralization, and then applies additional
flips to locally improve the minimum solid angle, one does better than the Delaunay tetrahedralization alone.
Joe’s results indicate that a tetrahedralization that is locally optimal with respect to solid angle may be far
from globally optimal. Although the Delaunay tetrahedralization does not maximize the minimum solid
angle, it certainly seems to optimize something useful for mesh generation. Marcum and Weatherill [63]
suggest that alternating between the Delaunay criterion and a min-max criterion (minimize the maximum
dihedral angle) works even better.

Later research by Joe [55] indicates that local improvements can often be made by considering the effect
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of two consecutive flips (even though the first of the two flips may worsen element quality). Joe identifies
several dual transformations that are frequently effective in practice, and several that rarely prove to be
useful.

All of these mesh improvement techniques are applicable to meshes generated by the algorithms de-
scribed in Chapters 3 and 4. However, I will not explore them further in this document.





Chapter 3

Two-Dimensional Delaunay Refinement
Algorithms for Quality Mesh Generation

Delaunay refinement algorithms for mesh generation operate by maintaining a Delaunay or constrained De-
launay triangulation, which is refined by inserting carefully placed vertices until the mesh meets constraints
on element quality and size.

These algorithms are successful because they exploit several favorable characteristics of Delaunay tri-
angulations. One such characteristic, already mentioned in Chapter 2, is Lawson’s result that a Delaunay
triangulation maximizes the minimum angle among all possible triangulations of a point set. Another fea-
ture is that inserting a vertex is a local operation, and hence is inexpensive except in unusual cases. The
act of inserting a vertex to improve poor quality elements in one part of a mesh will not unnecessarily per-
turb a distant part of the mesh that has no bad elements. Furthermore, Delaunay triangulations have been
extensively studied, and good algorithms are available.

The greatest advantage of Delaunay triangulations is less obvious. The central question of any Delaunay
refinement algorithm is “where should the next vertex be inserted?” As this chapter will demonstrate, a
reasonable answer is “as far from other vertices as possible.” If a new vertex is inserted too close to another
vertex, the resulting small edge will engender thin triangles.

Because a Delaunay triangle has no vertices in its circumcircle, a Delaunay triangulation is an ideal
search structure for finding points that are far from other vertices. (It’s no coincidence that the circumcenter
of each triangle of a Delaunay triangulation is a vertex of the corresponding Voronoi diagram.)

This chapter begins with a review of Delaunay refinement algorithms introduced by L. Paul Chew and
Jim Ruppert. Ruppert [81] proves that his algorithm produces nicely graded, size-optimal meshes with no
angles smaller than about20:7�. I show that Ruppert’s analysis technique can be used to prove that Chew’s
second published Delaunay refinement algorithm [21] can produce nicely graded size-optimal meshes with
no angles smaller than about26:5�. Chew proves that his algorithm can produce meshes with no angles
smaller than30�, albeit without any guarantees of grading or size-optimality. I generalize Chew’s idea so
that it can be applied to Ruppert’s algorithm (and later to three-dimensional Delaunay refinement). I also
discuss theoretical and practical issues in triangulating regions with small angles. The foundations built here
undergird the three-dimensional Delaunay refinement algorithms examined in the next chapter.

41
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Figure 3.1:(a) Diagram for proof that d = 2r sin�. (b) Diagram for proof that \icj = 2\ikj.

3.1 A Quality Measure for Simplices

In the finite element community, there are a wide variety of measures in use for the quality of an element,
the most obvious being the smallest and largest angles of each simplex. Miller, Talmor, Teng, and Walk-
ington [66] have pointed out that the most natural and elegant measure for analyzing Delaunay refinement
algorithms is thecircumradius-to-shortest edge ratioof a simplex: the radius of the circumsphere of the
simplex divided by the length of the shortest edge of the simplex. For brevity, I will occasionally refer to
this ratio as thequality of a simplex. One would like this ratio to be as small as possible.

In two dimensions, a triangle’s circumradius-to-shortest edge ratio is a function of its smallest angle. Let
4ijk have circumcenterc and circumradiusr, as illustrated in Figure 3.1(a). Suppose the length of edgeij
is d, and the angle opposite this edge is� = \ikj.

It is a well-known geometric fact that\icj = 2�. See Figure 3.1(b) for a derivation. Let� = \jkc.
Because4kci and4kcj are isosceles,\kci = 180� � 2(� + �) and\kcj = 180� � 2�. Subtracting the
former from the latter,\icj = 2�. (This derivation holds even if� is negative.)

Returning to Figure 3.1(a), it is apparent thatsin� = d=(2r). It follows that if the triangle’s shortest
edge has lengthd, then� is its smallest angle. Hence, ifB is an upper bound on the circumradius-to-
shortest edge ratio of all triangles in a mesh, then there is no angle smaller thanarcsin 1

2B (and vice versa).
A triangular mesh generator is wise to makeB as small as possible.

Unfortunately, a bound on circumradius-to-shortest edge ratio does not imply an angle bound in dimen-
sions higher than two. Nevertheless, the ratio is a useful measure for understanding Delaunay refinement in
higher dimensions.

With these facts in mind, I shall describe two-dimensional Delaunay refinement algorithms due to Paul
Chew and Jim Ruppert that act to bound the maximum circumradius-to-shortest edge ratio, and hence bound
the minimum angle of a triangular mesh.
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Figure 3.2: Any triangle whose circumradius-to-shortest edge ratio is larger than some bound B is split
by inserting a vertex at its circumcenter. The Delaunay property is maintained, and the triangle is thus
eliminated. Every new edge has length at least B times that of shortest edge of the poor triangle.

3.2 Chew’s First Delaunay Refinement Algorithm

Paul Chew has published at least two Delaunay refinement algorithms of great interest. The first, described
here, produces triangulations of uniform density [19]. The second, which can produce graded meshes [21],
will be discussed in Section 3.4.

3.2.1 The Key Ideas Behind Delaunay Refinement

The central operation of Chew’s, Ruppert’s, and my own Delaunay refinement algorithms is the insertion of
a vertex at the circumcenter of a triangle of poor quality. The Delaunay property is maintained, preferably by
Lawson’s algorithm or the Bowyer/Watson algorithm for the incremental update of Delaunay triangulations.
The poor triangle cannot survive, because its circumcircle is no longer empty. For brevity, I refer to the act
of inserting a vertex at a triangle’s circumcenter assplitting a triangle. The idea dates back at least to the
engineering literature of the mid-1980s [41].

The main insight of all the Delaunay refinement algorithms is that Delaunay refinement is guaranteed
to terminate if the notion of “poor quality” includes only triangles that have a circumradius-to-shortest edge
ratio larger than some appropriate boundB. Recall that the only new edges created by the Delaunay insertion
of a vertexv are edges connected tov (see Figure 3.2). Becausev is the circumcenter of some trianglet, and
there were no vertices inside the circumcircle oft beforev was inserted, no new edge can be shorter than
the circumradius oft. Becauset has a circumradius-to-shortest edge ratio larger thanB, every new edge has
length at leastB times that of the shortest edge oft.

Henceforth, a triangle whose circumradius-to-shortest edge ratio is greater thanB is said to beskinny.
Figure 3.3 provides an intuitive illustration of why all skinny triangles are eventually eliminated by Delaunay
refinement. The new vertices that are inserted into a triangulation (grey dots) are spaced roughly according
to the length of the shortest nearby edge. Because skinny triangles have relatively large circumradii, their
circumcircles are inevitably popped. When enough vertices are introduced that the spacing of vertices is
somewhat uniform, large empty circumcircles cannot adjoin small edges, and no skinny triangles can remain
in the Delaunay triangulation. Fortunately, the spacing of vertices does not need to be so uniform that the
mesh is poorly graded; this fact is formalized in Section 3.3.4.



44 Jonathan Richard Shewchuk

Needles Caps

Figure 3.3:Skinny triangles have circumcircles larger than their smallest edges. Each skinny triangle may
be classified as a needle, whose longest edge is much longer than its shortest edge, or a cap, which has
an angle close to 180�. (The classifications are not mutually exclusive.)

Chew’s algorithms both employ a bound ofB = 1 (though, as we shall see, the early algorithm is
stricter). With this bound, every new edge created is at least as long as some other edge already in the mesh.
This fact is sufficient to prove that Delaunay refinement terminates. Suppose that Delaunay refinement is
applied to improve the angles of a triangulationT whose shortest edge has lengthhmin. Delaunay refinement
never introduces a shorter edge, so any two vertices are separated by a distance of at leasthmin. Hence, if
each vertex is the center of a disk whose radius ishmin=2, all such disks have disjoint interiors. LetB(T )
be a bounding box ofT that is everywhere a distance of at leasthmin=2 from T ; all the discs defined above
are insideB(T ). Hence, the number of vertices times�h2min=4 cannot exceed the total area ofB(T ), and
termination is inevitable.

The implication is that the augmented triangulation will eventually run out of places to put vertices,
because vertices may only be placed at least a distance ofhmin away from all other vertices. At this time
(if not sooner), all triangles have a quality of one or smaller, and Delaunay refinement terminates. Upon
termination, because no triangle has a circumradius-to-shortest edge ratio larger than one, the mesh contains
no angle smaller than30�.

Chew’s first algorithm splits any triangle whose circumradius is greater thanhmin, and hence creates a
uniform mesh. Chew’s second Delaunay refinement algorithm relaxes this stricture, splitting only triangles
whose circumradius-to-shortest edge ratios are greater than one, and hence produces graded meshes in
practice, although Chew supplies no theoretical guarantee of good grading. In Section 3.4.2, I will show
that by slightly relaxing the quality bound, a guarantee of good grading can be obtained.

When the early algorithm terminates, all edge lengths are bounded betweenhmin and2hmin. The upper
bound follows because if the length of a Delaunay edge is greater than2hmin, then at least one of the two
Delaunay triangles that contain it has a circumradius larger thanhmin and is eligible for splitting.

My description of Delaunay refinement thus far has a gaping hole: mesh boundaries have not been
accounted for. The flaw in the procedure I have presented above is that the circumcenter of a skinny triangle
might not lie in the triangulation at all. Figure 3.4 illustrates an example in which there is a skinny triangle,
but no vertex can be placed inside its circumcircle without creating an edge smaller thanhmin, which would
compromise the termination guarantee.

The remainder of this chapter, and the entirety of the next chapter, are devoted to the problem of mod-
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Figure 3.4:The bold triangle could be eliminated by inserting a vertex in its circumcircle. However, a vertex
cannot be placed outside the triangulation, and it is forbidden to place a vertex within a distance of hmin from
any other vertex. The forbidden region includes the shaded disks, which entirely cover the bold triangle.

ifying Delaunay refinement so that it respects mesh boundaries. Before commencing that quest, I want to
emphasize that the central idea of Delaunay refinement generalizes without change to higher dimensions.
(For instance, Dey, Bajaj, and Sugihara [28] describe a straightforward generalization of Chew’s first algo-
rithm to three dimensions.) Imagine a triangulation that has no boundaries—perhaps it has infinite extent,
or perhaps it is mapped onto a manifold that is topologically equivalent to a torus (or higher-dimensional
generalization thereof). Regardless of the dimensionality, Delaunay refinement can eliminate all simplices
having a circumradius-to-shortest edge ratio greater than one, without creating any edge smaller than the
smallest edge already present. Unfortunately, boundaries complicate mesh generation immensely, and the
difficulty of coping with boundaries increases in higher dimensions.

3.2.2 Mesh Boundaries in Chew’s First Algorithm

The input to Chew’s algorithm is a PSLG that is presumed to besegment-bounded, meaning that the region
to be triangulated is entirely enclosed within segments. (Any PSLG may be converted to a segment-bounded
PSLG by any two-dimensional convex hull algorithm, if a convex triangulation is desired.) Untriangulated
holes in the PSLG are permitted, but these must also be bounded by segments. A segment must lie anywhere
a triangulated region of the plane meets an untriangulated region.

For some parameterh chosen by the user, all segments are divided into subsegments whose lengths are
in the range[h;

p
3h]. New vertices are placed at the division points. The parameterh must be chosen small

enough that some such partition is possible. Furthermore,h may be no larger than the smallest distance
between any two vertices of the resulting partition. (If a vertex is close to a segment, this latter restriction
may necessitate a smaller value ofh than would be indicated by the input vertices alone.)

The constrained Delaunay triangulation of this modified PSLG is computed. Next, Delaunay refinement
is applied. Circumcenters of triangles whose circumradii are larger thanh are inserted, one at a time. When
no such triangle remains, the algorithm terminates.

Because no subsegment has length greater than
p
3h, and specifically because no boundary subsegment

has such length, the circumcenter of any triangle whose circumradius exceedsh falls within the mesh, at a
distance of at leasth=2 from any subsegment. Why? If a circumcenter is a distance less thanh=2 from a
subsegment whose length is no greater than

p
3h, then the circumcenter is a distance less thanh from one

of the subsegment’s endpoints.
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Figure 3.5:A mesh generated by Chew’s first Delaunay refinement algorithm. (Courtesy Paul Chew).

Figure 3.6:A demonstration of the ability of the Delaunay refinement algorithm to achieve large gradations
in triangle size while constraining angles. No angles are smaller than 24�.

Chew’s early algorithm handles boundaries in a simple and elegant manner, at the cost that it only
produces meshes of uniform density, as illustrated in Figure 3.5. The remainder of this thesis examines
Delaunay refinement algorithms that generate graded meshes.

3.3 Ruppert’s Delaunay Refinement Algorithm

Jim Ruppert’s algorithm for two-dimensional quality mesh generation [82] is perhaps the first theoretically
guaranteed meshing algorithm to be truly satisfactory in practice. It extends Chew’s early algorithm by
allowing the density of triangles to vary quickly over short distances, as illustrated in Figure 3.6. The
number of triangles produced is typically smaller than the number produced either by Chew’s algorithm or
the Bern-Eppstein-Gilbert quadtree algorithm [11] (discussed in Section 2.2.3), as Figure 3.7 shows.
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Figure 3.7:Meshes generated by the Bern-Eppstein-Gilbert quadtree-based algorithm (top), Chew’s first
Delaunay refinement algorithm (center), and Ruppert’s Delaunay refinement algorithm (bottom). (The first
mesh was produced by the program tripoint , courtesy Scott Mitchell.)
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Figure 3.8:Segments are split recursively (while maintaining the Delaunay property) until no subsegments
are encroached.

I have already mentioned that Chew independently developed a similar algorithm [21]. It may be worth
noting that Ruppert’s earliest publications of his results [80, 81] slightly predate Chew’s. I present Ruppert’s
algorithm first because it is accompanied by a theoretical framework with which he proves its ability to
produce meshes that are both nicely graded andsize-optimal. Size optimality means that, for a given bound
on minimum angle, the number of elements composing any mesh produced by the algorithm is at most
a constant factor larger than the number in the smallest possible mesh that meets the same angle bound.
(The constant depends only upon the minimum allowable angle, and is too large to be useful as a practical
bound.) In Section 3.4.2, I will discuss how to apply Ruppert’s framework to Chew’s algorithm, for which
better bounds can be derived.

3.3.1 Description of the Algorithm

Like Chew’s algorithms, Ruppert’s algorithm takes a segment-bounded PSLG as its input. Unlike Chew’s
algorithms, Ruppert’s algorithm may start with either a constrained or unconstrained Delaunay triangulation.
Ruppert’s presentation of the algorithm is based on unconstrained triangulations, and it is interesting to see
how the algorithm responds to missing segments, so assume that we start with the Delaunay triangulation of
the input vertices, ignoring the input segments. Input segments that are missing from the triangulation will
be inserted as a natural consequence of the algorithm.

Again like Chew’s algorithms, Ruppert’s refines the mesh by inserting additional vertices (using Law-
son’s algorithm to maintain the Delaunay property) until all triangles satisfy the quality constraint. Vertex
insertion is governed by two rules.

� The diametral circleof a subsegment is the (unique) smallest circle that contains the subsegment.
A subsegment is said to beencroachedif a vertex lies strictly inside its diametral circle, or if the
subsegment does not appear in the triangulation. (Recall that the latter case generally implies the
former, the only exceptions being degenerate examples where several vertices lie precisely on the
diametral circle.) Any encroached subsegment that arises is immediately bisected by inserting a vertex
at its midpoint, as illustrated in Figure 3.8. The two subsegments that result have smaller diametral
circles, and may or may not be encroached themselves.

� As with Chew’s algorithm, each skinny triangle (having a circumradius-to-shortest edge ratio larger
than some boundB) is normally split by inserting a vertex at its circumcenter. The Delaunay property
guarantees that the triangle is eliminated, as illustrated in Figure 3.9. However, if the new vertex
would encroach upon any subsegment, then it is not inserted; instead, all the subsegments it would
encroach upon are split.
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Figure 3.9:Each skinny triangle is split by inserting a vertex at its circumcenter and maintaining the Delau-
nay property.

Figure 3.10:Missing segments are forced into the mesh by the same recursive splitting procedure used for
encroached subsegments that are in the mesh. In this sequence of illustrations, the thin line represents a
segment missing from the triangulation.

Figure 3.11: In this example, two segments (thin lines) must be forced into a triangulation. The first is
successfully forced in with a single vertex insertion, but the attempt to force in the second eliminates a
subsegment of the first.

Encroached subsegments are given priority over skinny triangles.

An implementation may give encroached subsegments that are not present in the mesh priority over
encroached subsegments that are present (though it isn’t necessary). If this option is chosen, the algorithm’s
first act is to force all missing segments into the mesh. Each missing segment is bisected by inserting a vertex
into the mesh at the midpoint of the segment (more accurately, at the midpoint of the place where the segment
should be). After the mesh is adjusted to maintain the Delaunay property, the two resulting subsegments
may appear in the mesh. If not, the procedure is repeated recursively for each missing subsegment until
the original segment is represented by a linear sequence of edges of the mesh, as illustrated in Figure 3.10.
We are assured of eventual success because the Delaunay triangulation always connects a vertex to its
nearest neighbor; once the spacing of vertices along a segment is sufficiently small, its entire length will be
represented. In the engineering literature, this process is sometimes calledstitching.

Unfortunately, the insertion of a vertex to force a segment into the triangulation may eliminate a subseg-
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A sample input PSLG.

Delaunay triangulation
of the input vertices.
Note that an input
segment is missing.

A vertex insertion
restores the missing
segment, but there are
encroached
subsegments.

One encroached
subsegment is
bisected.

A second encroached
subsegment is split.

The last encroached
subsegment is split.
Find a skinny triangle.

The skinny triangle’s
circumcenter is
inserted. Find another
skinny triangle.

This circumcenter
encroaches upon a
segment, and is
rejected for insertion.

Although the vertex
was rejected, the
segment it encroached
upon is still marked for
bisection.

The encroached
segment is split, and
the skinny triangle that
led to its bisection is
eliminated.

A circumcenter is
successfully inserted,
creating another
skinny triangle.

The triangle’s
circumcenter is
rejected for insertion.

The encroached
segment will be split.

The skinny triangle
was not eliminated.
Attempt to insert its
circumcenter again.

This time, its
circumcenter is
inserted successfully.
There’s only one
skinny triangle left.

The final mesh.

Figure 3.12:A complete run of Ruppert’s algorithm with the quality bound B =
p
2. The first two images are

the input PSLG and the (unconstrained) Delaunay triangulation of its vertices. In each image, highlighted
subsegments or triangles are about to be split, and highlighted vertices are rejected for insertion because
they encroach upon a subsegment.
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ment of some other segment (Figure 3.11). The subsegment thus eliminated is hence encroached, and must
be split further. To avoid eliminating subsegments, one couldlock subsegments of the mesh by marking the
edges that represent them to indicate that they are constrained. Flipping of such constrained edges is forbid-
den. However, subsegments whose diametral circles are nonempty are still considered encroached, and will
still be split eventually; hence, it makes little material difference to the algorithm whether one chooses to
lock subsegments. Nevertheless, locked subsegments yield faster implementations and will be necessary for
Chew’s second algorithm. The reader may wish to assume that all subsegments become permanent as soon
as they appear, although it was not part of Ruppert’s original specification.

If a subsegment is missing from a Delaunay triangulation, then the subsegment is not Delaunay, and
there must be a vertex is its diametral circle. (There is a degenerate exception to this rule, wherein several
vertices fall on the diametral circle, but this exception is not theoretically problematic.) This observation
is important because it unifies the theoretical treatment of missing subsegments and subsegments that are
present in the mesh but encroached.

After all encroached subsegments have been recursively bisected, and no subsegments are encroached,
all edges (including subsegments) of the triangulation are Delaunay. A mesh produced by Ruppert’s algo-
rithm is truly Delaunay, and not merely constrained Delaunay.

Figure 3.12 illustrates the generation of a mesh by Ruppert’s algorithm from start to finish. Several
characteristics of the algorithm are worth noting. First, if the circumcenter of a skinny triangle is rejected
for insertion, it may still be successfully inserted later, after the subsegments it encroaches upon have been
split. On the other hand, the act of splitting those subsegments is sometimes enough to eliminate the skinny
triangle. Second, the smaller features at the left end of the mesh lead to the insertion of some vertices toward
the right, but the size of the elements to the right remains larger than the size of the elements to the left. The
smallest angle in the final mesh is21:8�.

There is a loose end to tie up. One might ask what should happen if the circumcenter of a skinny triangle
falls outside the triangulation. Fortunately, the following lemma shows that the question is moot.

Lemma 13 LetT be a segment-bounded Delaunay triangulation (hence, any edge ofT that belongs to only
one triangle is a subsegment). Suppose thatT has no encroached subsegments. Letv be the circumcenter
of some trianglet of T . Thenv lies inT .

Proof: Suppose for the sake of contradiction thatv lies outsideT . Let c be the centroid oft; c clearly lies
insideT . Because the triangulation is segment-bounded, the line segmentcv must cross some subsegment
s, as Figure 3.13 illustrates. Becausecv is entirely contained in the interior of the circumcircle oft, the
circumcircle must contain a portion ofs; but the Delaunay property requires that the circumcircle be empty,
so the circumcircle cannot contain the endpoints ofs.

Say that a point isinsides if it is on the same side ofs asc, andoutsides if it is on the same side ofs as
v. Because the centerv of the circumcircle oft is outsides, the portion of the circumcircle that lies strictly
insides (the bold arc in the illustration) is entirely enclosed by the diametral circle ofs. The vertices oft
lie upont’s circumcircle and are (not strictly) insides. Up to two of the vertices oft may be the endpoints
of s, but at least one vertex oft must lie strictly inside the diametral circle ofs. But by assumptionT has no
encroached subsegments; the result follows by contradiction. �

Lemma 13 offers another reason why encroached subsegments are given priority over skinny triangles.
Because a circumcenter is inserted only when there are no encroached subsegments, one is assured that the
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c v

s
t

inside outside

Figure 3.13:If the circumcenter v of a triangle t lies outside the triangulation, then some subsegment s is
encroached.

circumcenter will be within the triangulation. Conversely, the act of splitting encroached subsegments rids
the mesh of triangles whose circumcircles lie outside it. The lemma also explains why the triangulation
should be completely bounded by segments before applying the refinement algorithm.

In addition to being required to satisfy a quality criterion, triangles can also be required to satisfy a
maximum size criterion. If a finite element simulation requires that elements be small enough to model a
phenomenon within some error bound, one may specify an upper bound on allowable triangle areas or edge
lengths as a function of location in the mesh. Triangles that exceed the local upper bound are split, whether
they are skinny or not. So long as the function bounding the sizes of triangles is itself bounded everywhere
above some positive constant, there is no threat to the algorithm’s termination guarantee.

3.3.2 Local Feature Size

The claim that Ruppert’s algorithm produces nicely graded meshes is based on the fact that the spacing of
vertices at any location in the mesh is within a constant factor of the sparsest possible spacing. To formalize
the idea of “sparsest possible spacing,” Ruppert introduces a function called thelocal feature size, which is
defined over the domain of the input PSLG.

Given a PSLGX, the local feature size lfs(p) at any pointp is the radius of the smallest disk centered at
p that intersects two nonincident vertices or segments ofX. Figure 3.14 gives examples of such disks for a
variety of points.

The local feature size of a point is proportional to the sparsest possible spacing of vertices in the neigh-
borhood of that point. The function lfs(�) is continuous and has the property that its directional derivatives
are bounded in the range[�1; 1]. The latter property, proven by the following lemma, sets a bound on the
fastest possible grading of element sizes in a mesh.

Lemma 14 (Ruppert [82]) For any PSLGX, and any two pointsu andv in the plane,

lfs(v) � lfs(u) + juvj:

Proof: The disk having radius lfs(u) centered atu intersects two nonincident features ofX. The disk having
radius lfs(u) + juvj centered atv contains the prior disk, and thus also intersects the same two nonincident
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Figure 3.14:The radius of each disk illustrated is the local feature size of the point at its center.

features ofX. Hence, the largest disk centered atv that contains two nonincident features ofX has radius
no larger than lfs(u) + juvj. �

This lemma generalizes without change to higher dimensions, so long as the question “Which pairs of
points are said to lie on nonincident features?” has a consistent answer that is independent ofu andv. In
essence, the proof relies only on the triangle inequality: ifu is within a distance of lfs(u) of each of two
nonincident features, thenv is within a distance of lfs(u) + juvj of each of those same two features.

3.3.3 Proof of Termination

In this section and the next, I present two proofs of the termination of Ruppert’s algorithm. The first is
similar to the proof that Chew’s early algorithm terminates, and is included for its intuitive value. The
second is taken from Ruppert, but is rewritten in a somewhat different form to bring out features that will
figure prominently in my own extensions. The second proof shows that the algorithm produces meshes that
are nicely graded and size-optimal.

Both proofs require thatB � p
2, and any two incident segments (segments that share an endpoint) in

the input PSLG must be separated by an angle of60� or greater. (Ruppert asks for angles of at least90�, but
an improvement to the original proof is made here.) For the second proof, these inequalities must be strict.

With each vertexv, associate aninsertion radiusrv, equal to the length of the shortest edge connected to
v immediately afterv is introduced into the triangulation. Consider what this means in three different cases.

� If v is an input vertex, thenrv is the Euclidean distance betweenv and the input vertex nearestv; see
Figure 3.15(a).

� If v is a vertex inserted at the midpoint of an encroached subsegment, thenrv is the distance between
v and the nearest encroaching mesh vertex; see Figure 3.15(b). If there is no encroaching vertex in the
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Figure 3.15:The insertion radius of a vertex v is the distance to the nearest vertex when v first appears
in the mesh. (a) If v is an input vertex, rv is the distance to the nearest other input vertex. (b) If v is the
midpoint of a subsegment encroached upon by a vertex of the mesh, rv is the distance to that vertex. (c)
If v is the midpoint of a subsegment encroached upon only by a vertex that was rejected for insertion, rv
is the radius of the subsegment’s diametral circle. (d) If v is the circumcenter of a skinny triangle, rv is the
radius of the circumcircle.

mesh (some triangle’s circumcenter was considered for insertion but rejected as encroaching), thenrv
is the radius of the diametral circle of the encroached subsegment, and hence the length of each of the
two subsegments thus produced; see Figure 3.15(c).

� If v is a vertex inserted at the circumcenter of a skinny triangle, thenrv is the circumradius of the
triangle; see Figure 3.15(d).

Each vertexv, including any vertex that is considered for insertion but not actually inserted because it
encroaches upon a subsegment, has aparentvertexp(v), unlessv is an input vertex. Intuitively, for any
non-input vertexv, p(v) is the vertex that is “responsible” for the insertion ofv. The parentp(v) is defined
as follows.

� If v is an input vertex, it has no parent.

� If v is a vertex inserted at the midpoint of an encroached subsegment, thenp(v) is the vertex that
encroaches upon that subsegment. (Note thatp(v) might not be inserted into the mesh as a result.) If
there are several such vertices, choose the one nearestv.

� If v is a vertex inserted (or rejected for insertion) at the circumcenter of a skinny triangle, thenp(v)
is the most recently inserted endpoint of the shortest edge of that triangle. If both endpoints of the
shortest edge are input vertices, choose one arbitrarily.

Each input vertex is the root of a tree of vertices. However, we are not interested in these trees as a
whole; only in the ancestors of any given vertex, which form a sort of history of the events leading to the
insertion of that vertex. Figure 3.16 illustrates the parents of all vertices inserted or considered for insertion
during the sample execution of Ruppert’s algorithm in Figure 3.12.

Working with these definitions, one can show why Ruppert’s algorithm terminates. The key insight is
that no descendant of a mesh vertex has an insertion radius smaller than the vertex’s own insertion radius.
Certainly, no edge will ever appear that is shorter than the smallest feature in the input PSLG. To prove these
facts, consider the relationship between a vertex’s insertion radius and the insertion radius of its parent.
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Figure 3.16:Trees of vertices for the example of Figure 3.12. Arrows are directed from parents to their
children. Children include all inserted vertices and one rejected vertex.

Lemma 15 Let v be a vertex of the mesh, and letp = p(v) be its parent, if one exists. Then eitherrv �
lfs(v), or rv � Crp, where

� C = B if v is the circumcenter of a skinny triangle,

� C = 1p
2

if v is the midpoint of an encroached subsegment andp is the circumcenter of a skinny
triangle,

� C = 1
2 cos� if v andp lie on incident segments separated by an angle of� (with p encroaching upon

the subsegment whose midpoint isv), where45� � � < 90�, and

� C = sin� if v andp lie on incident segments separated by an angle of� � 45�.

Proof: If v is an input vertex, there is another input vertex a distance ofrv from v, so lfs(v) � rv, and the
theorem holds.

If v is inserted at the circumcenter of a skinny triangle, then its parentp = p(v) is the most recently
inserted endpoint of the shortest edge of the triangle; see Figure 3.17(a). Hence, the length of the shortest
edge of the triangle is at leastrp. Because the triangle is skinny, its circumradius-to-shortest edge ratio is at
leastB, so its circumradius isrv � Brp.

If v is inserted at the midpoint of an encroached subsegments, there are four cases to consider. The
first two are all that is needed to prove termination of Ruppert’s algorithm if no angles smaller than90� are
present in the input. The last two cases consider the effects of acute angles.
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Figure 3.17: The relationship between the insertion radii of a child and its parent. (a) When a skinny
triangle is split, the child’s insertion radius is at least B times larger than that of its parent. (b) When
a subsegment is encroached upon by the circumcenter of a skinny triangle, the child’s insertion radius
may be (arbitrarily close to) a factor of

p
2 smaller than the parent’s, as this worst-case example shows.

(c, d) When a subsegment is encroached upon by the midpoint of an incident subsegment, the relationship
depends upon the angle � separating the two segments.

� If the parentp is an input vertex, or was inserted on a segment not incident to the segment containing
s, then lfs(v) � rv.

� If p is a circumcenter that was considered for insertion but rejected because it encroaches upons, then
p lies strictly inside the diametral circle ofs. By the Delaunay property, the circumcircle centered
at p contains no vertices, so its radius is limited by the nearest endpoint ofs. Hence,rv >

rpp
2
; see

Figure 3.17(b) for an example where the relation is nearly equality.

� If v andp lie on incident segments separated by an angle� where45� � � < 90�, the vertexa
(for “apex”) where the two segments meet obviously cannot lie inside the diametral circle ofs; see
Figure 3.17(c). Becauses is encroached upon byp, p lies inside its diametral circle. (Ifs is not present
in the triangulation,p might lie on its diametral circle in a degenerate case.) To find the worst-case
value of rvrp , imagine thatrp and� are fixed; thenrv = jvpj is minimized by making the subsegment
s as short as possible, subject to the constraint thatp cannot fall outside its diametral circle. The
minimum is achieved whenjsj = 2rv; if s were shorter, its diametral circle would not containp.
Basic trigonometry shows thatjsj = 2rv � rp

cos� .

� If v andp lie on incident segments separated by an angle� where� � 45�, then rv
rp

is minimized not
whenp lies on the diametral circle, but whenv is the orthogonal projection ofp ontos, as illustrated
in Figure 3.17(d). Hence,rv � rp sin�. �

The lemma just proven places limits on how quickly the insertion radius can decrease as one walks down
a tree from an input vertex to a descendant. If the insertion radius cannot decrease at all, Ruppert’s method
is easily guaranteed to terminate. Figure 3.18 expresses this notion as a dataflow graph: labeled arrows
indicate how a vertex can lead to the insertion of a new vertex whose insertion radius is some factor times
that of its parent. If this graph contains no cycle whose product is less than one, termination is guaranteed.
If some cycle has a product smaller than one, then a sequence of ever-smaller edges might be produced. The
graph makes clear why the quality boundB must be at least

p
2, and why the minimum angle between input

segments must be at least60�. The following theorem formalizes this idea.



Ruppert’s Delaunay Refinement Algorithm 57

Circumcenters

Triangle

Midpoints

Segment

?

�

�

? ?

� 1
2 cos�

� 1p
2

�B

Figure 3.18:Dataflow diagram illustrating the worst-case relation between a vertex’s insertion radius and
the insertion radii of the children it begets. If no cycles have a product smaller than one, Ruppert’s Delau-
nay refinement algorithm will terminate. Input vertices are omitted from the diagram because they cannot
contribute to cycles.

Theorem 16 Let lfsmin be the shortest distance between two nonincident entities (vertices or segments) of
the input PSLG1.

Suppose that any two incident segments are separated by an angle of at least60�, and a triangle is con-
sidered to be skinny if its circumradius-to-shortest edge ratio is larger thanB � p

2. Ruppert’s algorithm
will terminate, with no triangulation edge shorter thanlfsmin.

Proof: Suppose for the sake of contradiction that the algorithm introduces an edge shorter than lfsmin into
the mesh. Lete be the first such edge introduced. Clearly, the endpoints ofe cannot both be input vertices,
nor can they lie on nonincident segments. Letv be the most recently inserted endpoint ofe.

By assumption, no edge shorter than lfsmin existed beforev was inserted. Hence, for any ancestora of
v, ra � lfsmin. Let p = p(v) be the parent ofv, and letg = p(p) be the grandparent ofv (if one exists).
Consider the following cases.

� If v is the circumcenter of a skinny triangle, then by Lemma 15,rv � Brp �
p
2rp.

� If v is the midpoint of an encroached subsegment andp is the circumcenter of a skinny triangle, then
by Lemma 15,rv � 1p

2
rp � Bp

2
rg � rg. (Recall thatp is not inserted into the mesh.)

� If v andp lie on incident segments, then by Lemma 15,rv � rp
2 cos� . Because� � 60�, rv � rp.

1Equivalently, lfsmin = minu lfs(u), whereu is chosen from among the input vertices. The proof that both definitions are
equivalent is omitted, but it relies on the recognition that if two points lying on nonincident segments are separated by a distanced,
then at least one of the endpoints of one of the two segments is separated from the other segment by a distance ofd or less. Note
that lfsmin is not a lower bound for lfs(�) over the entire domain; for instance, a segment may have length lfsmin, in which case the
local feature size at its midpoint is lfsmin=2.
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In all three cases,rp � ra for some ancestora of p in the mesh. It follows thatrp � lfsmin, contradicting
the assumption thate has length less than lfsmin. It also follows that no edge shorter than lfsmin is ever
introduced, and the algorithm must terminate. �

Ruppert’s algorithm terminates only when all triangles in the mesh have a circumradius-to-shortest edge
ratio of B or better; hence, at termination, there are no angles smaller thanarcsin 1

2B . If B =
p
2, the

smallest value for which termination is guaranteed, no angle is smaller than20:7�. Later, I will describe
several modifications to the algorithm that improve this bound.

3.3.4 Proof of Good Grading and Size-Optimality

Theorem 16 guarantees that no edge of the final mesh is smaller than lfsmin. This guarantee may be satisfying
for a user who desires a uniform mesh, but is not satisfying for a user who requires a spatially graded mesh.
What follows is a proof that each edge of the output mesh has length proportional to the local feature sizes
of its endpoints. Hence, a small local feature size in one part of a mesh does not unreasonably reduce the
edge lengths at other, distant parts of the mesh. Triangle sizes vary quickly over short distances where such
variation is desirable to help reduce the number of triangles in the mesh.

Lemma 15 was concerned with the relationship between the insertion radii of a child and its parent;

the next lemma is concerned with the relationship betweenlfs(v)
rv

and lfs(p)
rp

. For any vertexv, define

Dv = lfs(v)
rv

. Think ofDv as the one-dimensional density of vertices nearv whenv is inserted, weighted by
the local feature size. Ideally, one would like this ratio to be as small as possible. Note thatDv � 1 for any
input vertex, butDv tends to be larger for a vertex inserted later.

Lemma 17 Let v be a vertex with parentp = p(v). Suppose thatrv � Crp (following Lemma 15). Then

Dv � 1 +
Dp

C .

Proof: By Lemma 14, lfs(v) � lfs(p) + jvpj. The insertion radiusrv is usuallyjvpj by definition, except in
the case wherep is rejected for insertion, in which caserv > jvpj. Hence, we have

lfs(v) � lfs(p) + rv

= Dprp + rv

� Dp

C
rv + rv:

The result follows by dividing both sides byrv. �

Lemma 17 generalizes to any dimension (assuming that some value forC can be proven), because it
relies only upon Lemma 14. Ruppert’s first main result follows.

Lemma 18 (Ruppert [82]) Suppose the quality boundB is strictly larger than
p
2, and the smallest angle

between two incident segments in the input PSLG is strictly greater than60�. There exist fixed constants
DT � 1 andDS � 1 such that, for any vertexv inserted (or considered for insertion and rejected) at the
circumcenter of a skinny triangle,Dv � DT , and for any vertexv inserted at the midpoint of an encroached
subsegment,Dv � DS . Hence, the insertion radius of every vertex is proportional to its local feature size.
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Proof: Consider any non-input vertexv with parentp = p(v). If p is an input vertex, thenDp = lfs(p)
rp

� 1.
Otherwise, assume for the sake of induction that the lemma is true forp, so thatDp � DT if p is a
circumcenter, andDp � DS if p is a midpoint. Hence,Dp � maxfDT ;DSg.

First, supposev is inserted or considered for insertion at the circumcenter of a skinny triangle. By
Lemma 15,rv � Brp. Thus, by Lemma 17,Dv � 1 + maxfDT ;DSg

B : It follows that one can prove that
Dv � DT if DT is chosen so that

DT � 1 +
maxfDT ;DSg

B
: (3.1)

Second, supposev is inserted at the midpoint of a subsegments. If its parentp is an input vertex or lies
on a segment not incident tos, then lfs(v) � rv, and the theorem holds. Ifp is the circumcenter of a skinny
triangle (rejected for insertion because it encroaches upons), rv � rpp

2
by Lemma 15, so by Lemma 17,

Dv � 1 +
p
2DT .

Alternatively, if p, like v, is a subsegment midpoint, andp andv lie on incident segments, thenrv �
rp

2 cos� by Lemma 15, and thus by Lemma 17,Dv � 1 + 2DS cos�. It follows that one can prove that
Dv � DS if DS is chosen so that

DS � 1 +
p
2DT ; and (3.2)

DS � 1 + 2DS cos�: (3.3)

If the quality boundB is strictly larger than
p
2, conditions 3.1 and 3.2 are simultaneously satisfied by

choosing

DT =
B + 1

B �p
2
; DS =

(1 +
p
2)B

B �p
2

:

If the smallest input angle�min is strictly greater than60�, conditions 3.3 and 3.1 are satisfied by choosing

DS =
1

1� 2 cos�min
; DT = 1 +

DS

B
:

One of these choices will dominate, depending on the values ofB and�min. However, ifB >
p
2 and

�min > 60�, there are values ofDT andDS that satisfy the lemma. �

Note that asB approaches
p
2 or � approaches60�, DT andDS approach infinity. In practice, the

algorithm is better behaved than the theoretical bound suggests; the vertex spacing approaches zero only
afterB drops below one.

Theorem 19 (Ruppert [82]) For any vertexv of the output mesh, the distance to its nearest neighborw is

at least lfs(v)
DS+1 .

Proof: Inequality 3.2 indicates thatDS > DT , so Lemma 18 shows thatlfs(v)
rv

� DS for any vertexv. If v

was added afterw, then the distance between the two vertices is at leastrv � lfs(v)
DS

, and the theorem holds.
If w was added afterv, apply the lemma tow, yielding

jvwj � rw � lfs(w)

DS
:
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By Lemma 14, lfs(w) + jvwj � lfs(v), so

jvwj � lfs(v)� jvwj
DS

:

It follows that jvwj � lfs(v)
DS+1 . �

To give a specific example, consider triangulating a PSLG (having no acute input angles) so that no angle
of the output mesh is smaller than15�; henceB :

= 1:93. For this choice ofB, DT
:
= 5:66 andDS

:
= 9:01.

Hence, the spacing of vertices is at worst about ten times smaller than the local feature size. Away from
boundaries, the spacing of vertices is at worst6:66 [58] times smaller than the local feature size.

Figure 3.19 shows the algorithm’s performance for a variety of angle bounds. Ruppert’s algorithm
typically terminates for angle bounds much higher than the theoretically guaranteed20:7, and typically
exhibits much better vertex spacing than the provable worst-case bounds imply.

Ruppert [82] uses Theorem 19 to prove the size-optimality of the meshes his algorithm generates, and
his result has been improved by Scott Mitchell. Mitchell’s theorem is stated below, but the proof, which is
rather involved, is omitted. Thecardinality of a triangulation is the number of triangles in the triangulation.

Theorem 20 (Mitchell [68]) Let lfsT (p) be the local feature size atp with respect to a triangulationT
(treatingT as a PSLG), whereaslfs(p) remains the local feature size atp with respect to the input PSLG.
Suppose a triangulationT with smallest angle� has the property that there is some constantk1 � 1 such
that for every pointp, k1lfsT (p) � lfs(p). Then the cardinality ofT is less thank2 times the cardinality of
any other triangulation of the input PSLG with smallest angle�, wherek2 = O(k21=�). �

Theorem 19 can be used to show that the precondition of Theorem 20 is satisfied by meshes generated
by Ruppert’s algorithm. Hence, a mesh generated by Ruppert’s algorithm has cardinality within a constant
factor of the best possible mesh satisfying the angle bound.

3.4 Chew’s Second Delaunay Refinement Algorithm and Diametral Lenses

This section presents two algorithms that offer an improved guarantee of good grading and that perform
slightly better in practice: Chew’s second Delaunay refinement algorithm [21], and a variant of Ruppert’s
algorithm that replaces diametral circles with narrower entities called diametral lenses. I will show that
the two algorithms are equivalent, and exhibit good grading and size-optimality for angles bounds of up to
26:5�. Chew shows that his algorithm terminates for an angle bound of up to30�, albeit with no guarantee
of good grading. The means by which he obtains this bound is discussed in Section 3.5.2. Note that Chew’s
paper also discusses triangular meshing of curved surfaces in three dimensions, but I consider the algorithm
only in its planar context.

3.4.1 Description of the Algorithm

Chew’s algorithm begins with the constrained Delaunay triangulation of a segment-bounded PSLG, and
uses Delaunay refinement with locked subsegments and a quality bound ofB = 1, but there is no idea of
encroached diametral circles. However, it may arise that a skinny trianglet cannot be split becauset and its
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Lake Superior PSLG. Triangulated with no minimum angle.

Triangulated with5� minimum angle. Triangulated with15� minimum angle.

Triangulated with25� minimum angle. Triangulated with34:2� minimum angle.

Figure 3.19:Meshes generated with Ruppert’s algorithm for several different quality bounds. The algorithm
does not terminate for angle bounds of 34:3� or higher on this PSLG.

circumcenterc lie on opposite sides of a subsegments (possibly withc outside the triangulation). Because
s is locked, inserting a vertex atc will not removet from the mesh. Instead,c is rejected for insertion,
and all free vertices (but not input vertices or vertices that lie on segments) that lie in the interior of the
diametral circle ofs and are visible from the midpoint ofs are deleted. Then, a new vertex is inserted at
the midpoint ofs. The Delaunay property is maintained throughout all deletions and insertions, except that
locked subsegments are not flipped. Figure 3.20 illustrates a subsegment split in Chew’s algorithm.

If several subsegments lie betweent andc, only the subsegment visible from the interior oft is split.

I claim that Chew’s algorithm is roughly equivalent (enough for the purposes of analysis) to a variant
of Ruppert’s algorithm in which diametral circles are replaced withdiametral lenses, illustrated in Fig-
ure 3.21(a). The diametral lens of a subsegments is the intersection of two disks whose centers lie on each
other’s boundaries, and whose boundaries intersect at the endpoints ofs. It follows that the defining disks
have radius2jsj=p3, and their centers lie on the bisector ofs at a distance ofjsj=p3 from s. The subsegment
s is split if there is a vertex, or an attempt to insert a vertex, in or on the boundary of its diametral lens, unless
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Figure 3.20:At left, a skinny triangle and its circumcenter lie on opposite sides of a subsegment. At right,
all vertices in the subsegment’s diametral circle have been deleted, and a new vertex has been inserted at
the subsegment’s midpoint.

30o
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t

(a) (b) (c)

Figure 3.21:(a) A hybrid Chew/Ruppert algorithm uses diametral lenses. Only vertices in the shaded region
encroach upon this subsegment. Note the equilateral triangles; a circumcenter at the lowest point of the
lens arises from any triangle whose vertices all lie on the upper lens’s boundary. (b, c) If a skinny triangle
and its circumcenter lie on opposite sides of a subsegment, then either the circumcenter or a vertex of the
triangle lies within the subsegment’s diametral lens.

another subsegment obstructs the line of sight between the encroaching vertex and the midpoint ofs. As
in Chew’s algorithm, subsegments are locked, and all visible free vertices are deleted from a subsegment’s
diametral circle before the subsegment is bisected.

Why are these algorithms equivalent? Lett be a skinny triangle whose circumcenterc lies on the
opposite side of a subsegments. Lemma 13 shows that some vertexu of the skinny triangle lies inside
the diametral circle ofs, on the circumcircle oft. There are two possibilities: eitherc encroaches upons
(Figure 3.21(b)), oru encroaches upons (Figure 3.21(c)). Hence, the modified Ruppert algorithm will split
any subsegment Chew’s algorithm would split.

Conversely, if a vertex lies in or on the boundary of the diametral lens ofs, then the triangle containing
s (on the same side ofs as the encroaching vertex) is skinny, and its circumcenter is on the other side
of s. Hence, Chew’s algorithm will split any subsegment the modified Ruppert algorithm would split.
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Figure 3.22:(a) Example where a subsegment is encroached upon by a vertex in its diametral lens. In the
worst case, rv = rc cos �. (b) Example where a subsegment is encroached because a skinny triangle and
its circumcenter lie on opposite sides of the subsegment.

(Technically, this is not quite true; Chew’s algorithm might decline to split a subsegment for which a vertex
lies precisely at the intersection of the subsegment’s bisector and the boundary of its diametral lens, thereby
forming a triangle with two angles of precisely30�. This difference does not affect the analysis of the
algorithms.)

The modified Ruppert algorithm has a small speed advantage because it avoids inserting many of the
vertices that would be deleted later in Chew’s algorithm.

Compared to diametral circles, diametral lenses have the disadvantage that the final mesh is not guaran-
teed to be Delaunay, but they have two advantages. First, many subsegment splits are avoided that would
otherwise have occurred. Hence, the final mesh may have fewer triangles. Second, when a subsegment
split does occur, the parent vertexp = p(v) cannot be too near a pole of the diametral circle, and the ratio
betweenrv andrp is better bounded. Whereas Lemma 15 could only guarantee thatrv � rpp

2
, diametral

lenses make a better bound possible.

3.4.2 Proof of Good Grading and Size-Optimality

I generalize lenses to allow the angle� that defines the shape of a lens, illustrated in Figure 3.22(a), to
assume values other than30�. The lens angle� is independent of the angle boundarcsin 1

2B ; for instance,
Ruppert’s unmodified algorithm has� = 45�. There is little sense, though, in making� smaller than the
angle bound, because reducing� belowarcsin 1

2B will only allow the insertion of more vertices that will be
deleted. If� < 30�, there is the problem that a skinny triangle and its circumcircle might lie on opposite
sides of a subsegment without any vertex falling in its lens, as illustrated in Figure 3.22(b). In this case, one
must use Chew’s formulation of the algorithm, so that the subsegment is properly considered encroached;
but diametral lenses may be employed as well, because they save time in the cases where a vertex does fall
inside.

It is this mixed formulation I envision for the proof that follows. I show that Chew’s algorithm with
� = arcsin 1

2B exhibits guaranteed grading forB >
p
5
2

:
= 1:12, giving an angle bound of up toarcsin 1p

5

:
=

26:56�. (Although I shall not give details, if� = 30�, one may prove guaranteed grading only forB > 2p
3

:
=
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Figure 3.23:(a) Figure for the case where exactly one vertex is in the semicircle. (b) Figure for the case
where more than one vertex is in the semicircle.

1:15, giving an angle bound of up toarcsin
p
3
4

:
= 25:65�.)

The proof requires an adjustment of the definition of “insertion radius” to accommodate the necessary
use of constrained Delaunay triangulations. The insertion radiusrc of the circumcenterc of a skinny triangle
t is now defined to be the radius oft’s circumcircle, whether or not the circumcircle contains any vertices.
Recall that by the previous definition,rc was the length of the longest edge that would adjoinc if c were
inserted. The only circumstance in which these definitions differ is whent andc lie on opposite sides of a
subsegment, and other vertices lie int’s circumcircle. These vertices do no harm becausec is not actually
inserted;c only acts as a placeholder relating the insertion radii of its parentp and its child. The change in
definition is necessary, because otherwise the inequalityrc � Brp, proven in Lemma 15, is invalidated.

Lemma 21 Let� be the angle that defines the shape of each diametral lens, as illustrated in Figure 3.22(a),
where� satisfiesarcsin 1

2B � � � 45�. Lets be a subsegment encroached upon by the circumcenterc of a
skinny trianglet. Suppose that all vertices in the diametral circle ofs are deleted (except those not visible
from the midpoint ofs), and a vertexv is inserted at the midpoint ofs. Then there is some vertexp, rejected
for insertion in or deleted from the diametral circle ofs, such thatrv � rp cos �.

Proof: Because all vertices visible fromv are deleted from inside the diametral circle ofs, rv is equal to
the radius of that diametral circle. (Vertices not visible fromv cannot affectv’s insertion radius, because an
edge cannot connect them tov.)

If the circumcenterc lies in (or on the boundary of) the diametral lens ofs, then the maximum possible
value ofrc occurs withc simultaneously on the boundary of the lens and on the bisector ofs, as illustrated in
Figure 3.22(a). The circumcircle centered atc can contain no vertices on or aboves, so its radius is limited
by the nearest endpoint ofs. Hence,rv � rc cos �; define the parent ofv to bec.

The case just described is sufficient to prove the lemma if� � 30�. However, if� < 30�, thenc might
not fall in the lens; rather,s might be encroached becauset andc lie on opposite sides ofs, as illustrated in
Figure 3.22(b). Assume without loss of generality thatt lies aboves, with c below. By Lemma 13, at least
one vertex oft lies strictly inside the upper half of the diametral circle ofs. There are two cases, depending
on the number of vertices in the interior of this semicircle.

If the upper semicircle contains only one vertexu, thent is defined byu ands. Becauset is skinny and
� � arcsin 1

2B , u must lie in the shaded region of Figure 3.23(a), and thereforerv � ru cos �. Define the
parent ofv to beu.

If the upper semicircle contains more than one vertex, consider Figure 3.23(b), in which the shaded
region represents points within a distance ofrv from a subsegment endpoint. If some vertexu lies in the
shaded region, thenru � rv; define the parent ofv to beu. If no vertex lies in the shaded region, then there
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are at least two vertices in the white region of the upper semicircle. Letu be the most recently inserted of
these vertices. The vertexu is no further thanrv from any other vertex in the white region, soru � rv;
define the parent ofv to beu. �

Lemma 21 extends the definition of parent to accommodate a new type of encroachment. If a subsegment
is encroached because a triangle and its circumcenter lie on opposite sides of the subsegment, although no
vertex encroaches upon the subsegment’s diametral lens, then the parent of the newly inserted midpoint is
defined to be a vertex in the upper half of the subsegment’s diametral circle. It is important that the parent
is inside the diametral circle ofs, because Lemma 17, which bounds the density of vertices near a vertex,
relies on the assumption thatjpvj � rv.

What if the diametral circle ofs contains a vertexu that is visible fromv but not deleted? Eitheru is an
input vertex, oru lies on a segment. The analysis of Lemma 21 does not apply, becauserv is (at most)juvj,
which is smaller than the diametral radius ofs. In this case,u andv lie on nonincident input features, so
rv � lfs(v); this case is already covered by the analysis of Lemma 15. Choose the input vertex or segment
vertex closest tov to be the parent ofv.

Do the differences between Chew’s algorithm and Ruppert’s original algorithm invalidate any of the
assumptions used in Section 3.3 to prove termination? None of the bounds proven in Theorem 16 and
Lemma 18 is invalidated. When a vertex is deleted from a Delaunay triangulation, no vertex finds itself
adjoining a shorter edge than the shortest edge it adjoined before the deletion. (This fact follows because
a constrained Delaunay triangulation connects every vertex to its nearest visible neighbor.) Hence, each
vertex’s insertion radius still serves as a lower bound on the lengths of all edges that connect the vertex to
vertices older than itself, and therefore Theorem 16 and Lemma 18 are still true.

The only part of the termination proof that does not apply to Chew’s second algorithm is the assumption
that every operation inserts a new vertex. If vertices can be deleted, are we sure that the algorithm termi-
nates? Observe that vertex deletions only occur when a subsegment is split, and vertices are never deleted
from subsegments. Theorem 16 sets a lower bound on the length of each subsegment, so only a finite num-
ber of subsegment splits can occur. After the last subsegment split, no more vertex deletions occur, and
termination may be proven in the usual manner.

The consequence of the bound proven by Lemma 21 is illustrated in the dataflow graph of Figure 3.24.
Recall that termination is guaranteed if no cycle has a product less than one. Hence, a condition of ter-
mination is thatB cos � � 1. The best bound that satisfies this criterion, as well as the requirement that
� � arcsin 1

2B , isB =
p
5
2

:
= 1:12, which corresponds to an angle bound ofarcsin 1p

5

:
= 26:5�.

Theorem 22 Suppose the quality boundB is strictly larger than
p
5
2 , and the smallest angle between two

incident segments in the input PSLG is strictly greater than60�. There exist fixed constantsDT � 1 and
DS � 1 such that, for any vertexv inserted (or considered for insertion and rejected) at the circumcenter
of a skinny triangle,Dv � DT , and for any vertexv inserted at the midpoint of an encroached subsegment,
Dv � DS .

Proof: Essentially the same as the proof of Lemma 18, except that Lemma 21 makes it possible to replace
Condition 3.2 with

DS � 1 +
DT

cos �

� 1 +
2BDTp
4B2 � 1

(3.4)
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Figure 3.24:Dataflow diagram for Chew’s algorithm (with a variable angle condition).

If the quality boundB is strictly larger than
p
5
2 , Conditions 3.1 and 3.4 are simultaneously satisfied by

choosing

DT =

�
1 + 1

B

�p
4B2 � 1

p
4B2 � 1� 2

; DS =

p
4B2 � 1 + 2Bp
4B2 � 1� 2

:

DT andDS must also satisfy the conditions specified in Lemma 18 related to the angles between seg-
ments. IfB >

p
5
2 and�min > 60�, there are values ofDT andDS that satisfy the theorem. �

Theorem 19, which bounds the edge lengths of the mesh, generalizes directly to cover Chew’s algorithm,
so we may compare this analysis with that of Ruppert’s algorithm. As in Section 3.3, consider triangulating
a PSLG (having no acute input angles) so that no angle of the output mesh is smaller than15�; hence
B

:
= 1:93. For this choice ofB, DT

:
= 3:27 andDS

:
= 4:39, compared to the corresponding values of5:66

and9:01 for Ruppert’s algorithm. Hence, the spacing of vertices is at worst a little more than five times the
local feature size, and a little more than four times the local feature size away from boundaries. Because the
worst-case number of triangles is proportional to the square ofDS , Chew’s algorithm is size-optimal with a
constant of optimality almost four times better than Ruppert’s algorithm. Of course, worst-case behavior is
never seen is practice, and the observed difference between the two algorithms is less dramatic.

3.5 Improvements

Here, I describe several modifications to the Delaunay refinement algorithms that improve the quality of the
elements of a mesh. The first modification improves the quality of triangles away from the boundary of the
mesh; the second, which generalizes an idea of Chew, improves the quality of triangles everywhere.
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3.5.1 Improving the Quality Bound in the Interior of the Mesh

The first improvement arises easily from the discussion in Section 3.3.3. So long as no cycle having a
product less than one appears in the insertion radius dataflow graph (Figure 3.18 or 3.24), termination is
assured. The barrier to reducing the quality boundB below

p
5
2 is the fact that, when an encroached segment

is split, the child’s insertion radius may be a factor of
p
5
2 smaller than its parent’s. However, not every

segment bisection is a worst-case example, and it is easy to explicitly measure the insertion radii of a parent
and its potential progeny before deciding to take action. One can take advantage of these facts with any one
of the following strategies.

� Use a quality bound ofB = 1 for triangles that are not in contact with segment interiors, and a quality
bound ofB =

p
2 (for diametral circles) orB =

p
5
2 (for diametral lenses) for any triangle having a

vertex that lies in the interior of a segment.

� Attempt to insert the circumcenter of any triangle whose circumradius-to-shortest edge ratio is larger
than one. If any subsegments would be encroached, the circumcenter is rejected as usual, but the
encroached subsegments are split only if the triangle’s circumradius-to-shortest edge ratio is greater
than

p
2 (for diametral circles) or

p
5
2 (for diametral lenses).

� Attempt to insert the circumcenter of any triangle whose circumradius-to-shortest edge ratio is larger
than one. If any subsegments would be encroached, the circumcenter is rejected as usual, and each
encroached subsegment is checked to determine the insertion radius of the new vertex that might be
inserted at its midpoint. The only midpoints inserted are those whose insertion radii are at least as
large as the length of the shortest edge of the skinny triangle.

The first strategy is easily understood from Figure 3.25. Because segment vertices may have smaller
insertion radii than free vertices, segment vertices are only allowed to father free vertices whose insertion
radii are larger than their own by a factor of

p
2 or

p
5
2 , as appropriate. Hence, no diminishing cycles are

possible.

The other two strategies work for an even more straightforward reason: all vertices (except rejected
vertices) are expressly forbidden from creating descendants having insertion radii smaller than their own.
The third strategy is more aggressive than the second, as it always chooses to insert a vertex if the second
strategy would do so.

The first strategy differs from the other two in its tendency to space segment vertices more closely than
free vertices. The other two strategies tend to space segment vertices and free vertices equally, at the cost
of spacing the latter more densely than necessary. The first strategy interrupts the propagation of reduced
insertion radii from segment vertices to the free vertices, whereas the other two interrupt the process by
which free vertices create segment vertices with smaller insertion radii. The effect of the first strategy is
easily stated: upon termination, all angles are better than20:7� or 26:5�, and all triangles whose vertices do
not lie in segment interiors have angles of30� or better. For the other two strategies, the delineation between
26:5� triangles and30� triangles is not so clear, although the former only occur near boundaries.

None of these strategies compromises good grading or size-optimality, although the bounds may be
weaker. Assume that a quality boundB is applied to all triangles, and a stronger quality boundBI > 1
applies in the interior of the mesh. Then Equation 3.1 is accompanied by the equation

DT � 1 +
DT

BI
;
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Figure 3.25:This dataflow diagram demonstrates how a simple modification to Ruppert’s or Chew’s algo-
rithm can improve the quality of elements away from mesh boundaries.

which holds true when

DT � BI

BI � 1
:

If this bound is stricter than the bounds already given in the proof of Lemma 18 (for diametral circles)
or 22 (for diametral lenses), thenDS must also be recalculated using Equation 3.2. Furthermore, if the
second or third strategy is used, thenDT increases increased to matchDS (Condition 3.2 no longer holds.)
However, ifB >

p
2 (for Ruppert’s algorithm) orB >

p
5
2 (for Chew’s),BI > 1, and�min > 60�, there

are values ofDT andDS that satisfy the lemma.

3.5.2 Range-Restricted Segment Splitting

In this section, I suggest another algorithmic change that generalizes an idea of Chew [21]. Both Ruppert’s
and Chew’s algorithms may be modified to make it possible to apply a quality bound ofB = 1 to all triangles
of the mesh, although there is no accompanying guarantee of good grading. I shall consider Ruppert’s
algorithm first, then Chew’s.

Observe that the only mechanism by which a vertex can have a child with a smaller insertion radius than
its own is by encroaching upon a subsegment. Furthermore, an encroaching circumcenterv cannot have
a child whose insertion radius is smaller thanrv=

p
2, and hence it cannot cause the splitting of a segment

whose length is less than
p
2rv. On the other hand, ifv causes the bisection of a segment whose length is

2rv or greater, the child that results will have an insertion radius of at leastrv. I conclude that a vertexv can
only produce a child whose insertion radius is less thanrv if a segment is present whose length is betweenp
2rv and2rv. If no such segment exists, the cycle of diminishing edge lengths is broken.

Thus the motivation forrange-restricted segment splitting. Whenever possible, the length of each sub-
segment is restricted to the rangec2x, wherec 2 (1;

p
2] andx is an integer. This restriction is illustrated

in Figure 3.26, wherein darkened boxes on the number line represent legal subsegment lengths. The posi-
tive integers are partitioned into contiguous sets, each having a geometric width of

p
2, and alternate sets
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Figure 3.26:Legal subsegment lengths are of the form c2x, where c 2 (1;
p
2] and x is an integer.

are made illegal. With this choice of partition, the bisection of any legal subsegment will produce legal
subsegments.

Of course, input segments might not have legal lengths. However, when an encroached segment of
illegal length is split, rather than place a new vertex at its midpoint, one may place the vertex so that the
resulting subsegments fall within the legal range.

How does this restriction help? A vertex whose insertion radius is greater than2x for some integerx
cannot have a descendant whose insertion radius is2x or smaller unless a subsegment having illegal length
is split. However, each illegal subsegment can be split only once, yielding subsegments of legal length;
hence, the fuel for diminishing edge lengths is in limited supply.

An illegal segment of the formc2x, wherec 2 (
p
2; 2] andx is an integer, is split into subsegments of

lengthsc12x andc22x as follows.

� If c 2 (
p
2; 32 ], thenc1 =

p
2
4 andc2 = c� c1.

� If c 2 (32 ;
2+

p
2

2 ], thenc1 = 1+ � andc2 = c� c1. (Here,� is an infinitesimal value used because1 is
technically not in the legal range. In practice,� = 0 is recommended.)

� If c 2 (2+
p
2

2 ; 2], thenc1 =
p
2
2 andc2 = c� c1.

The most unbalanced split occurs ifc = 3
2 . Then, the ratio betweenc1 andc is

p
2
6

:
= 0:2357.

I shall show formally that Delaunay refinement with range-restricted segment splitting terminates for
any quality boundB � 1. Define theinsertion radius floorr0v of a vertexv to be the largest power of two
that is strictly less than the vertex’s insertion radiusrv.

Lemma 23 Let lfsmin be the shortest distance between two nonincident entities (vertices or segments) of
the input PSLG. Suppose that a triangle is considered to be skinny if its circumradius-to-shortest edge ratio
is larger thanB � 1. Suppose also that the input PSLG has no angles smaller than60�. Letv be a vertex
of the mesh, and letp = p(v) be its parent, if one exists. Then eitherr0v � lfsmin=6, or r0v � r0p.

Proof: If v is an input vertex, then lfsmin � lfs(v) � rv � 2r0v, and the theorem holds.

If v is inserted at the circumcenter of a skinny triangle, then by Lemma 15,rv � Brp. BecauseB � 1,
it follows thatr0v � r0p.

If v is inserted at the midpoint of an encroached subsegments, there are three cases to consider.

� If the parentp is an input vertex, or was inserted on a segment not incident to the segment containing
s, then lfsmin � lfs(v) � rv � 2r0v.
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� If v andp lie on incident segments separated by an angle� where60� � � < 90�, then by Lemma 15,
rv � rp

2 cos� � rp. Therefore,r0v � r0p.

� If p is a circumcenter that was considered for insertion but rejected because it encroaches upons,
there are two subcases to consider.

� If s has legal lengthc2x, wherec 2 (1;
p
2] andx is an integer, thens is precisely bisected. By

Lemma 15,rv � rpp
2
. However,rv = c2x�1 is in a legal range, sor0v � r0p. If r0v were smaller

thanr0p, thenrv would lie in the illegal range(
r0pp
2
; r0p].

� If s has illegal lengthc2x, wherec 2 (
p
2; 2] andx is an integer, then the most unbalanced split

possible occurs ifc = 3
2 , in which casec1 =

p
2
4 . Becauses has illegal length, it must be an

input segment, and its endpoints are input vertices, so lfsmin is no greater thanc2x. The insertion
radiusrv is equal toc12x. Becausec12x is in a legal range,r0v � rvp

2
. Hence,

lfsmin

r0v
�

p
2

lfsmin

rv

�
p
2
c2x

c12x

� 6;

and the theorem holds. �

Theorem 24 Suppose that any two incident segments are separated by an angle of at least60�, and a
triangle is considered to be skinny if its circumradius-to-shortest edge ratio is larger thanB � 1. Ruppert’s
algorithm with range-restricted segment splitting will terminate, with no triangulation edge shorter than
lfsmin=6.

Proof: By Lemma 23, the insertion radius floorr0v of every vertexv is either greater than or equal to lfsmin=6,
or greater than or equal to the insertion radius floor of some preexisting vertex. Because a vertex’s insertion
radius floor is a lower bound on its insertion radius, no edge smaller than lfsmin=6 is ever introduced into
the mesh, and the algorithm must terminate. �

The bound can be improved to lfsmin=4. The bound of lfsmin=6 results because a segment of length
lfsmin may undergo a worst-case unbalanced segment split. To prevent this, define the legal ranges to be
of the formc2x wherec 2 [lfsmin;

p
2lfsmin], instead ofc 2 (1;

p
2]. With this choice of legal range, only

segments longer than
p
2lfsmin undergo an unbalanced split, and only segments of length at least3

2 lfsmin

undergo a worst-case unbalanced split. To implement this modification, the initial triangulation must be
scanned to determine the value of lfsmin.

I recommend two changes to range-restricted segment splitting for practical implementation. First, legal
lengths may be defined by the closed range[1;

p
2] rather than(1;

p
2]. Theoretically, this can be justified by

the fact that a vertex inserted at the midpoint of a segment because of an encroaching circumcenter has an
insertion radiusstrictly greater than1p

2
times its parent’s. In practice, floating-point roundoff error renders

such quibbles meaningless, but the choice of this legal range is justified because there is always some “slack”
in the mesh; not every inserted vertex has the smallest possible insertion radius relative to its parent. If a
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Figure 3.27:An example demonstrating a modification to the method of splitting certain illegal segments.
The original method (left) splits an illegal segment of length 1:499 into legal subsegments of lengths

p
2

4

and 1:499�
p
2

4
. The modified method (right) splits it into an illegal subsegment of length 0:999 and a legal

subsegment of length 0:5. If the illegal subsegment is split in turn, both of its subsegments are legal, and
neither is shorter than the smaller subsegment of the original method.

closed legal range is used, redefine the insertion radius floorr0v to be the largest power of two that is less
than or equal torv, rather than strictly less thanrv.

The second change modifies the rule for values ofc in the range(
p
2; 32 ]. In this case, choosec1 = 1

2
andc2 = c� c1. For this choice,c2 is not a legal length, but if the illegal subsegment of lengthc22

x is itself
split, two legal subsegments result, and the smaller one has length

p
2
4 2x. This subsegment is no worse than

the smaller subsegment of the original scheme, as Figure 3.27 illustrates. If by good fortune the subsegment
having lengthc22x is not split, the creation of an unnecessarily small feature is avoided.

Theorem 24 holds even if the two practical changes discussed above are used, with small modifications
to the proof.

I turn now to Chew’s algorithm. Another advantage of diametral lenses over diametral circles is that they
make it possible to use narrower illegal ranges. An encroaching circumcenterv cannot have a child whose
insertion radius is smaller thanrv cos �, so the width of each illegal range need only be1cos � . For instance,
if � = 30�, one may use illegal ranges having a geometric width of2p

3

:
= 1:15 instead of

p
2
:
= 1:41. In

this case, illegal segment lengths are of the formc2x, wherec 2 (
p
3; 2), andx is an integer.

Because the legal range can be made wider, and the illegal range narrower, than when diametral circles
are used, splitting an illegal segment to yield legal segments is easier. Chew handles illegal segments by
trisecting them; one can do better by splitting them into two pieces, just unevenly enough to ensure that both
subsegment lengths are legal. The following recipe is suggested.

� If c 2 (
p
3; 1 +

p
3
2 ], thenc1 = 1 andc2 = c� c1.

� If c 2 (1 +
p
3
2 ; 2), thenc1 =

p
3
2 andc2 = c� c1.

The most unbalanced split occurs ifc is infinitesimally larger than
p
3. In this case, the ratio betweenc2 and

c is approximately1� 1p
3

:
= 0:4226, which isn’t much worse than bisection.

For comparison, I shall describe how Chew [21] guarantees that his algorithm terminates for an angle
bound of30�. Chew employs range-restricted segment splitting, but uses only one range instead of an infinite
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(a) (b) (c)

Figure 3.28:(a) A PSLG with a tiny segment at the bottom tip. (b) With a minimum angle of 32� (B :
= 0:944),

Ruppert’s algorithm creates a well-graded mesh, despite the lack of theoretical guarantees. (c) With a
minimum angle of 33:5� (B :

= 0:906), grading is poor.

sequence of ranges. For an appropriate valueh (see Chew for details, but one could useh = lfsmin=2), Chew
declares the range(

p
3h; 2h) invalid; subsegments with lengths between2

p
3h and4h are trisected rather

than bisected. Hence, no edge smaller thanh ever appears.

There are two disadvantages of using a single illegal range, rather than an infinite series of illegal ranges.
The first is the inconvenience of computingh in advance. The second and more fundamental problem is that
if small angles are present in the input PSLG, edges smaller thanh may arise anyway; see Section 3.7 for a
discussion of the problem and its cures.

It does not appear to be possible to prove that Delaunay refinement with range-restricted segment split-
ting produces graded or size-optimal meshes with circumradius-to-shortest edge ratios that are very close to
one. The difficulty is that if a mesh contains a long segment with a small feature size at one end, the small
feature size might be expected to propagate along the whole length of the segment. A small subsegment at
one end of the segment might indirectly cause its neighboring subsegment to be split until the neighbor is
the same size. The neighboring subsegment might then cause its neighbor to be split, and so on down the
length of the segment.

As Figure 3.28 demonstrates, however, even if diametral circles are used, a chain reaction severe enough
to compromise the grading of the mesh only seems to occur in practice if the quality bound is less than about
0:92 (corresponding to an angle of about33�)!

The meshes in this figure were generated without range-restricted segment splitting, which is useful as a
theoretical construct but unnecessary in practice. As I have mentioned before, there is a good deal of slack in
the inequalities that underly the proof of termination, because newly inserted vertices rarely have worst-case
insertion radii. As a result of this slack, any Delaunay refinement algorithm that handles boundaries in a
reasonable way seems to achieve angle bounds higher than30�. An examination of range-restricted segment
splitting reveals why we should expect this to be true: an ever-diminishing sequence of edges is possible
only through an endless chain reaction of alternating splits of segments of legal and illegal length, and only
if the sequence of vertex insertions encounters little slack on its infinite journey. Such an occurrence is
improbable.

The improvements described thus far are improvements to the circumradius-to-shortest edge ratio of
the triangles of a mesh; however, they have not reduced the minimum permissible angle between input
segments. The next two sections consider the problem of dealing with angles smaller than60�. The first of
these two sections sets limits on what is possible, and shows that we cannot be overly ambitious.
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Figure 3.29:In any triangulation with no angles smaller than 30�, the ratio b=a cannot exceed 27.

3.6 A Negative Result on Quality Triangulations of PSLGs That Have Small
Angles

For any angle bound� > 0, there exists a PSLGP such that it is not possible to triangulateP without
creating a new corner (not present inP) whose angle is smaller than�. This statement applies to any
triangulation algorithm, and not just those discussed in this thesis. Here, I discuss why this is true.

The result holds for certain PSLGs that have an angle much smaller than�. Of course, one must respect
the PSLG; small input angles cannot be removed. However, one would like to believe that it is possible to
triangulate a PSLG without creating any small angles that aren’t already present in the input. Unfortunately,
no algorithm can make this guarantee for all PSLGs.

The reasoning behind the result is as follows. Suppose a segment in a conforming triangulation has been
split into two subsegments of lengthsa andb, as illustrated in Figure 3.29. Mitchell [68] proves that if the
triangulation has no angles smaller than�, then the ratiob=a has an upper bound of(2 cos �)180

�=�. (This
bound is tight if180�=� is an integer; Figure 3.29 offers an example where the bound is obtained.) Hence
any bound on the smallest angle of a triangulation imposes a limit on the gradation of triangle sizes along a
segment (or anywhere in the mesh).

A problem can arise if a small angle� occurs at the intersection vertexo of two segments of a PSLG, and
one of these segments is separated by a much larger angle from a third segment incident ato. Figure 3.30
(top) illustrates this circumstance. Assume that the middle segment of the three is split by a vertexp,
which may be present in the input or may be inserted to help achieve the angle constraint elsewhere in the
triangulation. The insertion ofp forces the narrow region between the first two segments to be triangulated
(Figure 3.30, center), which may necessitate the insertion of a new vertexq on the segment containingp.
Let a = jpqj andb = jopj as illustrated. If the angle bound is respected, the lengtha cannot be large; the
ratioa=b is bounded below

sin�

sin �

�
cos(� + �) +

sin(� + �)

tan �

�
:

If the region above the narrow region is part of the interior of the PSLG, the fan effect demonstrated in
Figure 3.29 may necessitate the insertion of another vertexr betweeno andp (Figure 3.30, bottom); this
circumstance is unavoidable if the product of the bounds onb=a anda=b given above is less than one. For an
angle constraint of� = 30�, this condition occurs when� is about six tenths of a degree. Unfortunately, the
new vertexr creates the same conditions as the vertexp, but is closer too; the process will cascade, eternally
necessitating smaller and smaller triangles to satisfy the angle constraint. No algorithm can produce a finite
triangulation of such a PSLG without violating the angle constraint.

This bound is probably not strict. It would not be surprising if a30� angle bound is not obtainable by
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Figure 3.30:Top: A difficult PSLG with a small interior angle �. Center: The vertex p and the angle constraint
necessitate the insertion of the vertex q. Bottom: The vertex q and the angle constraint necessitate the
insertion of the vertex r. The process repeats eternally.

any algorithm for� = 1�, and Delaunay refinement often fails in practice to achieve a30� angle bound for
� = 5�.

Oddly, it appears to be straightforward to triangulate this PSLG using an infinite number of well-shaped
triangles. A vertex at the apex of a small angle can be shielded with a thin strip of well-shaped triangles,
as Figure 3.31 illustrates. (This idea is related to Ruppert’s technique of usingshield edges[82]. However,
Ruppert mistakenly claims that the region concealed behind shield edges always has a finite good-quality
triangulation.) The strip is narrow enough to admit a quality triangulation at the smallest input angle. Its
shape is chosen so that the angles it forms with the segments outside the shield are obtuse, and the region
outside the shield can be triangulated by Delaunay refinement. The region inside the shield is triangulated by
an infinite sequence of similar strips, with each successive strip smaller than the previous strip by a constant
factor close to one.
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Figure 3.31:How to create a quality triangulation of infinite cardinality around the apex of a very small
angle. The method employs a thin strip of well-shaped triangles about the vertex (left). Ever-smaller copies
of the strip fill the gap between the vertex and the outer strip (right).

uw

v

a

x

Figure 3.32:A problem caused by a small input angle. Vertex v encroaches upon au, which is split at w.
Vertex w encroaches upon av, which is split at x. Vertex x encroaches upon aw, and so on.

3.7 Practical Handling of Small Input Angles

A practical mesh generator should not respond to small input angles by failing to terminate, even if the only
alternative is to leave bad angles behind. The result of the previous section quashes all hope of finding a
magic pill that will make it possible to triangulate any PSLG without introducing additional small angles.
The Delaunay refinement algorithms discussed thus far will fail to terminate on PSLGs like that of Fig-
ure 3.30. Of course, Delaunay refinement algorithms should be modified so that they do not try to split any
skinny triangle that bears a small input angle. However, even this change does not help with the bad PSLGs
described in the previous section, because such PSLGs always have a small angle that is removable, but
another small angle invariably takes its place. How can one detect this circumstance, and ensure termination
of the algorithm without unnecessarily leaving many bad angles behind?

Figure 3.32 demonstrates one of the difficulties caused by small input angles. If two incident segments
have unmatched lengths, a endless cycle of mutual encroachment may produce ever-smaller subsegments
incident to the apex of the small angle. For diametral spheres, this phenomenon is only observed with angles
smaller than45�; for diametral lenses, only with angles smaller than roughly22:24�.

To solve this problem, Ruppert [82] suggests “modified segment splitting using concentric circular
shells”. Imagine that each input vertex is encircled by concentric circles whose radii are all the powers
of two, as illustrated in Figure 3.33. When an encroached subsegment has an endpoint that is an input vertex
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New vertex

Midpoint

Figure 3.33:If an encroached subsegment has a shared input vertex for an endpoint, the subsegment is
split at its intersection with a circular shell whose radius is a power of two.

short edge leads to another subsegment split

long subsegment

short edge

Figure 3.34:The short edge opposite a small angle can cause other short edges to be created as the
algorithm attempts to remove skinny triangles. If the small insertion radii propagate around an endpoint and
cause the supporting subsegments to be split, a shorter edge is created, and the cycle may repeat.

shared with another segment, the subsegment is split not at its midpoint, but at one of the circular shells, so
that one of resulting subsegments has a power-of-two length. The shell that gives the best balanced split is
chosen; in the worst case, the smaller resulting subsegment is one-third the length of the split subsegment. If
both endpoints are shared input vertices, choose one endpoint’s shells arbitrarily. Range-restricted segment
splitting may optionally be used on all subsegments not subject to concentric shell splitting. Each input
segment may undergo up to three unbalanced splits: two that create power-of-two subsegments at the ends
of the segment, and one to split an illegal subsegment lying between these two. All other subsegment splits
are bisections.

Concentric shell segment splitting prevents the runaway cycle of ever-smaller subsegments portrayed in
Figure 3.32, because incident subsegments of equal length do not encroach upon each other. Again, it is
important to modify the algorithm so that it does not attempt to split a skinny triangle that bears a small
input angle, and cannot be improved.

Modified segment splitting using concentric circular shells is generally effective in practice for PSLGs
that have small angles greater than10�, and often for smaller angles. It is always effective for polygons with
holes (for reasons to be discussed shortly). As the previous section hints, difficulties are only likely to occur
when a small angle is adjacent to a much larger angle. The negative result of the previous section arises
not because subsegment midpoints can cause incident subsegments to be split, but because the free edge
opposite a small angle is shorter than the subsegments whose endpoints define it, as Figure 3.34 illustrates.

The two subsegments of Figure 3.34 are coupled, in the sense that if one is bisected then so is the
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Figure 3.35: Concentric shell segment splitting ensures that polygons (with holes) can be triangulated,
because it causes small angles to be clipped off. This sequence of illustrations demonstrate that if a clipped
triangle’s interior edge is flipped, a smaller clipped triangle will result.

other, because the midpoint of one encroaches upon the other. This holds true for any two segments of

equal length separated by less than60�, if diametral circles are used, orarctan
q

13
3 � 30� :

= 34:34�, if
diametral lenses are used. Each time such a dual bisection occurs, a new edge is created that is smaller than
the subsegments produced by the bisection; the free edge can be arbitrarily small if the angle is arbitrarily
small. One of the endpoints of the free edge has a small insertion radius, though that endpoint’s parent
(typically the other endpoint) might have a large insertion radius. Hence, a small angle functions as an
“insertion radius reducer”. The new small edge will likely engender other small edges as the algorithm
attempts to remove skinny triangles. If small insertion radii propagate around an endpoint of the small edge,
the incident subsegments may be split again, commencing an infinite sequence of smaller and smaller edges.

If the PSLG is a polygon (possibly with polygonal holes), small insertion radii cannot propagate around
the small edge, because the small edge partitions the polygon into a skinny triangle (which the algorithm
does not attempt to split) and everything else. The small edge is itself flipped or penetrated only if there is
an even smaller feature elsewhere in the mesh. If the small edge is thus removed, the algorithm will attempt
to fix the two skinny triangles that result, thereby causing the subsegments to be split again, thus creating a
new smaller edge (Figure 3.35).

For general PSLGs, how may one diagnose and cure diminishing cycles of edges? A sure-fire way to
guarantee termination was hinted at in Section 3.5.1: never insert a vertex whose insertion radius is smaller
than the insertion radius of its most recently inserted ancestor (its parent if the parent was inserted; its
grandparent if the parent was rejected), unless the parent is an input vertex or lies on a nonincident segment.

This restriction is undesirably conservative for two reasons. First, if a Delaunay triangulation is desired,
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Figure 3.36:The simplest method of ensuring termination when small input angles are present has unde-
sirable properties, including the production of large angles and many small angles.

aa
a

(a) (b)

Figure 3.37:(a) Example of a subsegment cluster. If all the subsegments of a cluster have power-of-two
lengths, then they all have the same length and are effectively split as a unit because of mutual encroach-
ment. (b) Several independent subsegment clusters may share the same apex.

the restriction might prevent us from obtaining one, because segments may be left encroached. A second,
more pervasive problem is demonstrated in Figure 3.36. Two subsegments are separated by a small input
angle, and one of the two is bisected. The other subsegment is encroached, but is not bisected because a
small edge would be created. One unfortunate result is that the triangle bearing the small input angle also
bears a large angle of almost180�. Recall that large angles can be worse than small angles, because they
jeopardize convergence and interpolation accuracy in a way that small angles do not. Another unfortunate
result is that many skinny triangles may form. The triangles in the figure cannot be improved without
splitting the upper subsegment.

As an alternative, I suggest the following scheme.

The Quitter: A Delaunay refinement algorithm that knows when to give up. Guaranteed to terminate.

The Quitter is based on Delaunay refinement with concentric circular shells; range-restricted segment
splitting is optional. When a subsegments is encroached upon by the circumcenter of a skinny triangle, a
decision is made whether to split it with a vertexv, or to leave it whole. (In either case, the circumcenter is
rejected for insertion.) The decision process is somewhat elaborate.

If neither endpoint ofs bears a small input angle (less than60�), or if both endpoints do, thens is
split. Otherwise, leta be the apex of the small angle. Define thesubsegment clusterof s to be the set of
subsegments incident toa that are separated froms, or from some other member of the subsegment cluster
of s, by less than60�. If diametral circles are used, once all the subsegments of a cluster have been split
to power-of-two lengths, they must all be the same length to avoid encroaching upon each other. If one is
bisected, the others follow suit, as illustrated in Figure 3.37(a). Ifv is inserted it is called atrigger vertex,
because it may trigger the splitting of all the subsegments in a cluster.

If diametral lenses are used, it is no longer true that all the subsegments in a cluster split as a unit.
However, clusters are still defined by a60� angle, because diametral lenses do not diminish the problem of
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small edges appearing opposite a cluster apex.

The definition of subsegment cluster does not imply that all subsegments incident to an input vertex are
part of the same cluster. For instance, Figure 3.37(b) shows two independent subsegment clusters sharing
one apex, separated from each other by angles of at least60�.

To decide whethers should be split, the Quitter determines the insertion radiusrg of v’s grandparent
g (which is the parent of the encroaching circumcenter), and the minimum insertion radiusrmin of all the
midpoint vertices (includingv) that will be introduced into the subsegment cluster ofs if all the subsegments
in the cluster having lengthjsj or greater are split. If all the subsegments in the cluster have the same length,
thenrmin depends upon the smallest angle in the subsegment cluster.

The vertexv is inserted, splittings, only if one or more of the following three conditions hold.

� If rmin � rg, thenv is inserted.

� If one of the segments in the subsegment cluster ofs has a length that is not a power of two, thenv is
inserted.

� If no ancestor ofv also lies in the interior of the segment containings, thenv is inserted. (Endpoints
of the segment are exempt.)

End of description of the Quitter.

If there are no input angles smaller than60�, the Quitter acts no differently from Ruppert’s or Chew’s
algorithm by the following reasoning. Any encroached subsegments is the only subsegment in its cluster,
andrmin = rv. If s is precisely bisected, Theorem 16 states that the first condition (rmin � rg) always
holds. If the length ofs is not a power of two,s may be split unevenly, and hence the conditionrmin � rg
may not be true, but the second condition above ensures that such splits are not prevented.

On the other hand, if small angles are present, and the first condition fails for some encroached segment,
the third condition identifies situations in which the mesh can be improved without threatening the guarantee
of termination. This rule attempts to distinguish between the case where a segment is encroached because
of small input features, and the case where a segment is encroached because it bears a small angle.

Theorem 25 The Quitter always terminates.

Proof sketch: Suppose for the sake of contradiction that the Quitter fails to terminate. Then there must be
an infinite sequence of verticesV with the property that each vertex ofV (except the first) is the child of its
predecessor, and for any positive real valued, some vertex inV has insertion radius smaller thand. (If there
is no such sequence of descendants, then there is a lower bound on the length of an edge, and the algorithm
must terminate.)

Say that a vertexv has thediminishing propertyif its insertion radius floorr0v is less than that of all its
ancestors. The sequenceV contains an infinite number of vertices that have the diminishing property.

Thanks to Lemma 23, if a vertexv has an insertion radius floor smaller than that of all its ancestors, then
v must have been inserted in a subsegments under one of the following conditions:

� s bears a small input angle, and the length ofs is not a power of two.

� s is of illegal length.
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� s is encroached upon by an input vertex or a vertex lying on a segment not incident tos.

� s is encroached upon by a vertexp that lies on an segment incident tos at an angle less than60�.

Only a finite number of vertices can be inserted under the first three conditions. The first condition can
occur twice for each input segment (once for each end), and the second condition can occur once for each
input segment. Any subsegment shorter than lfsmin cannot be encroached upon by a nonincident feature, so
only a finite number of vertex insertions of the third type are possible as well. Hence,V must contain an
infinite number of vertices inserted under the fourth condition.

However,V cannot have arbitrarily long runs of such vertices, because power-of-two segment splitting
prevents a cluster of incident segments from engaging in a chain reaction of ever-diminishing mutual en-
croachment. Specifically, let2x be the largest power of two less than or equal to the length of the shortest
subsegment in the cluster. No subsegment of the cluster can be split to a length shorter than2x�1 through
the mechanism of encroachment alone. The edges opposite the apex of the cluster may be much shorter than
2x�1, but some other mechanism is needed to explain how the sequenceV can contain insertion radii even
shorter than these edges. The only such mechanism that can be employed an infinite number of times is the
attempted splitting of a skinny triangle. Hence,V must contain an infinite number of trigger vertices.

One of the rules is that a trigger vertex may only be inserted if it has no ancestor in the interior of the
same segment. Hence,V may only contain one trigger vertex for each input segment. It follows that the
number of trigger vertices inV is finite, a contradiction. �

The Quitter eliminates all encroached subsegments, so if diametral circles are used, there is no danger
that a segment will fail to appear in the final mesh (if subsegments are not locked), or that the final mesh will
not be Delaunay (if subsegments are locked). Because subsegments are not encroached, an angle near180�

cannot appear immediately opposite a subsegment (as in Figure 3.36), although large angles can appear near
subsegment clusters. The Quitter offers no guarantees on quality when small input angles are present, but
skinny triangles in the final mesh occur only near input angles less than60�.

The Quitter has the unfortunate characteristic that it demands more memory than would otherwise be
necessary, because each vertex of the mesh must store its insertion radius and a pointer to its parent (or, if its
parent was rejected, its grandparent). Hence, I suggest possible modifications to avoid these requirements.

The Quitter needs to know the insertion radius of a vertex only when a trigger vertexv is being consid-
ered for insertion. It is straightforward to compute the insertion radii ofv and the other vertices that will
be inserted into the cluster. However, the insertion radius of the grandparent of the trigger vertex is used
for comparison, and may not be directly computable from the mesh, because other vertices may have been
inserted nearg sinceg was inserted. Nevertheless, it is reasonable to approximaterg by using the lengthd
of the shortest edge of the skinny triangle whose circumcenter isv’s parent, illustrated in Figure 3.38. The
lengthd is an upper bound onrg, so its use will not jeopardize the Quitter’s termination guarantee; the mod-
ified algorithm is strictly more conservative in its decision of whether to insertv. With this modification,
there is no need to store the insertion radii of vertices for later use.

The only apparent way to avoid storing a pointer from each vertex to its nearest inserted ancestor is to
eliminate the condition that a trigger vertex may be inserted if none of its ancestors lies in the same segment.
The possible disadvantage is that a small nearby input feature might fail to cause the segment to be split
even though it ought to have the privilege, and thus skinny triangles will unnecessarily remain in the mesh.
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Figure 3.38:The length d of the shortest edge of a skinny triangle is an upper bound on the insertion radius
rg of the most recently inserted endpoint of that edge.

3.8 Conclusions

The intuition governing Delaunay refinement comes from an understanding of the relationship between the
insertion radii of parents and their children. Hence, I use dataflow graphs such as Figure 3.18 to demonstrate
these relationships. This manner of thinking brings clarity to ideas that otherwise might be hidden within
proofs. For instance, Figure 3.18 provides an immediate explanation for why Ruppert’s algorithm achieves
an angle bound of up to20:7� (which corresponds to a circumradius-to-shortest edge ratio of

p
2). The

same ideas can be found in Ruppert’s original paper, but are somewhat obscured by the mathematics. By
bringing the intuition to the forefront, and by explicitly graphing the relationships between the insertion
radii of related vertices, I have found a variety of improvements to Delaunay refinement and its analysis,
which have been discussed in detail in this chapter and are listed again here.

� The minimum angle separating two input segments can be relaxed from the90� bound specified by
Ruppert to a60� bound. This observation comes from the dataflow graph of Figure 3.18.

� My new analysis of Chew’s algorithm arose from my attempts to understand the relationship between
segment midpoints and their parents, which is reflected in the dataflow graph of Figure 3.24.

� The dataflow graphs for Ruppert’s and Chew’s algorithms sparked my recognition of the fact that a
better quality bound can be applied in the interior of the mesh, as illustrated in Figure 3.25.

� The idea of range-restricted segment splitting arose from my attempts to find ways to weaken the
spiral of diminishing insertion radii. (Only later did I realize that Chew had developed a very similar
idea.)

� My method for handling small input angles works by preventing vertices from having children that
might contribute to a sequence of vertices with endlessly diminishing insertion radii.

Hence, this manner of approaching Delaunay refinement has shown great fecundity. Simple as these
dataflow graphs are, they have provided the clues that helped to unearth most of the new results in this thesis,
and in Chapter 4 they will prove themselves invaluable in studying tetrahedral Delaunay refinement, in which
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the relationships between the insertion radii of different types of vertices become even more complicated.
Most of the improvements in the list above will repeat themselves in the three-dimensional setting.

At this writing, I have not yet implemented diametral lenses. I expect them to outperform diametral
circles in circumstances in which long segments are present, because diametral lenses are less prone to be
split. On the other hand, diametral circles and diametral lenses will exhibit little or no difference for many
inputs whose boundaries are composed of many tiny segments, such as Figure 3.7 (bottom).

My negative result on quality triangulations comes as a surprise, as researchers in mesh generation have
been laboring for some time under false assumptions about what is possible in triangular mesh generation.
A few have mistakenly claimed that they could provide triangulations of arbitrary PSLGs with no new small
angles. Fortunately, a recognition of the fundamental difficulty of triangulating PSLGs with tiny angles
makes it easier to formulate a strategy for handling them. Once one realizes that the best one can hope for is
to minimize the unavoidable damage that small input angles can cause, it becomes relatively easy to develop
a method that prevents vertices having smaller and smaller insertion radii from being inserted. The method
I have suggested is somewhat more elaborate than what is necessary to guarantee termination, but is likely
to reward the extra effort with better triangulations.



Chapter 4

Three-Dimensional Delaunay Refinement
Algorithms

Herein, I build upon the framework of Ruppert and Chew to design a Delaunay refinement algorithm for
tetrahedral meshes. The generalization to three dimensions is relatively straightforward, albeit not with-
out complications. The basic operation is still the Delaunay insertion of vertices at the circumcenters of
simplices, and the result is still a mesh whose elements have bounded circumradius-to-shortest edge ratios.

Unfortunately, unlike the two-dimensional case, such a mesh is not necessarily adequate for the needs
of finite element methods. The reason is the existence of a type of tetrahedron called asliver or kite. The
canonical sliver is formed by arranging four vertices, equally spaced, around the equator of a sphere, then
perturbing one of the vertices slightly off the equator, as illustrated in Figure 4.1. As is apparent in the
figure, a sliver can have an admirable circumradius-to-shortest edge ratio (as low as1p

2
!) yet be considered

awful by most other measures, because its volume and its shortest altitude can be arbitrarily close to zero.
Slivers have no two-dimensional analogue; any triangle with a small circumradius-to-shortest edge ratio is
considered “well-shaped” by the usual standards of finite element methods.

Slivers often survive Delaunay-based tetrahedral mesh generation methods because their small circum-
radii minimize the likelihood of vertices being inserted in their circumspheres (Figure 4.2). A perfectly flat
sliver whose edge lengths are lfsmin about the equator and

p
2lfsmin across the diagonals is guaranteed to

survive any Delaunay refinement method that does not introduce edges smaller than lfsmin, because every

Figure 4.1:A sliver tetrahedron.
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Needles Caps Slivers

Figure 4.2:In three dimensions, skinny tetrahedra known as needles and caps have circumspheres signifi-
cantly larger than their shortest edge, and are thus eliminated when additional vertices are inserted, spaced
to match the shortest edge. A sliver can have a circumradius smaller than its shortest edge, and can easily
survive in a Delaunay tetrahedralization of uniformly spaced vertices.

point in the interior of its circumsphere is a distance less than lfsmin from one of its vertices; no vertex can
be inserted inside the sphere.

Despite this problem, Delaunay refinement methods are valuable for generating three-dimensional mesh-
es. The worst slivers can often be removed by Delaunay refinement, even if there is no theoretical guarantee.
Meshes with bounds on the circumradius-to-shortest edge ratios of their tetrahedra are an excellent starting
point for mesh smoothing and optimization methods designed to remove slivers and improve the quality
of an existing mesh (see Section 2.2.4). Even if slivers are not removed, Delaunay refinement tetrahedral-
izations are sometimes adequate for such numerical techniques as the control volume method [66], which
operates upon the Voronoi diagram rather than the Delaunay tetrahedralization. The Voronoi dual of a tetra-
hedralization with bounded circumradius-to-shortest edge ratios has nicely rounded cells, even if slivers are
present in the tetrahedralization itself.

In this chapter, I present a three-dimensional generalization of Ruppert’s algorithm that generates tetra-
hedralizations whose tetrahedra have circumradius-to-shortest edge ratios no greater than the boundB =p
2

:
= 1:41. If B is relaxed to be greater than two, then good grading can also be proven. I enhance the

algorithm with a structure similar to diametral lenses, and thereby achieve a tetrahedron quality bound of
B = 2p

3

:
= 1:15, or a well-graded mesh for any tetrahedron quality bound that satisfiesB > 2

p
2p
3

:
= 1:63.

Size-optimality, however, cannot be proven.
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(a) (b)

Figure 4.3:(a) Any facet of a PLC may contain holes, slits, and vertices; these may support intersections
with other polytopes or allow a user of the finite element method to apply boundary conditions. (b) When
a PLC is tetrahedralized, each facet of the PLC is partitioned into triangular subfacets, which respect the
holes, slits, and vertices.

4.1 Preliminaries

4.1.1 Piecewise Linear Complexes and Local Feature Size

Before defining a three-dimensional Delaunay refinement algorithm, it is necessary to define the input upon
which the algorithm will operate. I use a generalization of a planar straight line graph called apiecewise
linear complex(PLC); see Miller, Talmor, Teng, Walkington, and Wang [67] for a similar definition that
generalizes to any number of dimensions.

In three dimensions, a PLC is a set of vertices, segments, and facets. Vertices and segments are no dif-
ferent than in the two-dimensional case, except that they are embedded in three-dimensional space. Facets,
however, can be quite complicated in shape. A facet is a planar boundary, such as the rectangular and nearly-
rectangular facets that define the object depicted in Figure 4.3(a). As the figure illustrates, a facet may have
any number of sides, may be nonconvex, and may have holes, slits, or vertices in its interior. However, an
immutable requirement is that a facet must be planar.

A piecewise linear complexX is required to have the following properties.

� For any facet inX, every edge and vertex of the facet must appear as a segment or vertex ofX. Hence,
all facets are segment-bounded.

� X contains both endpoints of each segment ofX.

� X is closed under intersection. Hence, if two facets ofX intersect at a line segment, that line segment
must be represented by a segment ofX. If a segment or facet ofX intersects another segment or facet
of X at a single point, that point must be represented by a vertex inX.

� If a segment ofX intersects a facet ofX at more than a finite number of points, then the segment
must be entirely contained in the facet. This rule ensures that facets “line up” with their boundaries.
A facet cannot be bounded by a segment that extends beyond the boundary of the facet.

The process of tetrahedral mesh generation necessarily divides each facet into triangular faces, as illus-
trated in Figure 4.3(b). Just as the edges that compose a segment are called subsegments, the triangular faces
that compose a facet are calledsubfacets. All of the triangular faces visible in Figure 4.3(b) are subfacets,
but most of the faces in the interior of the tetrahedralization are not.
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Figure 4.4:Two incident facets separated by a dihedral angle of nearly 180�. What is the local feature size
at p?

Recall that any vertex inserted into a segment remains there permanently. When examining the algo-
rithms discussed in this chapter, keep in mind that vertices inserted into facets are also permanent, but the
edges that partition a facet into subfacets arenotpermanent, arenot treated like subsegments, and are always
subject to flipping according to the Delaunay criterion.

Many approaches to tetrahedral mesh generation permanently triangulate the input facets as a separate
step prior to tetrahedralizing the interior of a solid. The problem with this approach is that these indepen-
dent facet triangulations may not be ideal for forming a good tetrahedralization when other surfaces are
taken into account. For instance, a feature that lies near a facet (but not necessarily in the plane of the
facet) may necessitate the use of smaller subfacets near that feature. The algorithms of this chapter use
an alternative approach, wherein facet triangulations are refined in conjunction with the tetrahedralization.
Each facet’s triangulation can change in response to attempts to improve the tetrahedra of the mesh. The
tetrahedralization process is not beholden to poor decisions made earlier.

Because the shape of a facet is versatile, the definition of local feature size does not generalize straight-
forwardly. Figure 4.4 demonstrates the difficulty. Two facetsF andG are incident at a segmentS, separated
by a dihedral angle of almost180�. The facets are not convex, and they may pass arbitrarily close to each
other in a region far fromS. What is the local feature size at the pointp? BecauseF andG are incident,
a ball large enough to intersect two nonincident features must have diameter as large as the width of the
prongs. However, the size of tetrahedra nearp is determined by the distance separatingF andG, which
could be arbitrarily small. The straightforward generalization of local feature size does not account for this
peccadillo of nonconvex facets.

To develop a more appropriate metric, I define afacet regionto be any region of a facet visible from
a single point on its boundary. (Visibility is defined solely by and within the facet in question.) Two facet
regions on two different facets are said to beincident if they are defined by the same point. Figure 4.5
illustrates two incident facet regions, and the point that defines them. Two points, one lying inF and one
lying in G, are said to lie in incident facet regions if there is any point on the shared boundary ofF andG
that is visible from both points. They are said to lie in nonincident facet regions if no such point exists. (For
higher-dimensional mesh generation, this definition extends unchanged to polytopes of higher dimension.)

Similarly, if a segmentS is incident to a facetF at a single vertexa, thenS is said to be incident to the
facet region ofF visible froma. If a vertexv is incident to a facetF , thenv is said to be incident to the
facet region ofF visible fromv.

Given a piecewise linear complexX, I define the local feature size lfs(p) at a pointp to be the radius of
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Figure 4.5:Shaded areas are two incident facet regions. Both regions are visible from the indicated point.

F

G

Sv

p

Figure 4.6:Two incident facets separated by a dihedral angle of nearly 180�. The definition of local feature
size should not approach zero near v, but it is nonetheless difficult to mesh the region between F and G
near v.

the smallest ball centered atp that intersects two points that lie on nonincident vertices, segments, or facet
regions ofX. (To be rigorous, lfs(p) is sometimes the radius of the largest ball that doesn’t intersect two
such points.)

Unfortunately, careful specification of which portions of facets are incident doesn’t solve all the prob-
lems attributable to nonconvex facets. Figure 4.6 demonstrates another difficulty. Again, two facetsF and
G are incident at a segmentS, separated by a dihedral angle slightly less than180�. One endpointv of S is a
reflex vertex ofF . The incident facet regions defined by the vertexv have the same problem we encountered
in Figure 4.4: the local feature size at pointp may be much larger than the distance between facetsF andG
at pointp.

In this case, however, the problem is unavoidable. Suppose one chooses a definition of local feature
size that reflects the distance betweenF andG atp. As p moves towardv, its local feature size approaches
zero, suggesting that infinitesimally small tetrahedra are needed to mesh the region nearv. Intuitively and
practically, a useful definition of local feature size must have a positive lower bound.

The mismatch between the definition of local feature size proposed here and the small distance between
F andG at p reflects a fundamental difficulty in meshing the facets of Figure 4.6—a difficulty that is not
present in Figure 4.4. In Figure 4.6, it is not possible to mesh the region betweenF andG at v without
resorting to poorly shaped tetrahedra. The facets of Figure 4.4 can be meshed entirely with well-shaped
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Figure 4.7:In a sufficiently small neighborhood around any vertex, a PLC looks like a set of rays emitted
from that vertex.

tetrahedra. My three-dimensional Delaunay refinement algorithm outlaws inputs like Figure 4.6, at least for
the purposes of analysis.

There are two reasons why it makes sense to use visibility to define incident features. First, if a point
p is not visible from a boundary pointv of the same facet, there must be an edge, not incident tov, that
separatesv from p. Second, if one studies a sufficiently small neighborhood around a vertex, any facet or
segment incident to the vertex appears to be a union of rays emanating from that vertex, as illustrated in
Figure 4.7. Hence, the local feature size does not approach zero anywhere. Incidentally, examination of an
arbitrarily small neighborhood around each vertex is sufficient to diagnose problems like that in Figure 4.6,
because the only input features that threaten the termination of Delaunay refinement are those that persist
no matter how small the tetrahedra become.

Lemma 14, which states that lfs(v) � lfs(u)+juvj for any two pointsu andv, applies to this definition of
local feature size just as it applies in two dimensions. The only prerequisite for the correctness of Lemma 14,
besides the triangle inequality, is that there be a consistent definition of which pairs of points lie in incident
regions, and which do not.

4.1.2 Orthogonal Projections

Frequently in this chapter, I will use the notion of theorthogonal projectionof a geometric entity onto a line
or plane. Given a facet or subfacetF and a pointp, the orthogonal projection projF (p) of p ontoF is the
point that is coplanar withF and satisfies the requirement that the linep[projF (p)] is orthogonal toF , as
illustrated in Figure 4.8. The projection exists whether or not it falls inF .

Similarly, the orthogonal projection projS(p) of p onto a segment or subsegmentS is the point that is
collinear withS and satisfies the requirement that the direction of projection is orthogonal toS.

Sets of points, as well as points, may be projected. IfF andG are facets, then projF (G) is the set
fprojF (p) : p 2 Gg.
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F S

Figure 4.8:The orthogonal projections of points and sets of points onto facets and segments.

4.2 Generalization of Ruppert’s Algorithm to Three Dimensions

In this section, I describe a three-dimensional Delaunay refinement algorithm that produces well-graded
tetrahedral meshes for any circumradius-to-shortest edge ratio bound greater than two. Improvements to the
algorithm are made in later sections. Miller, Talmor, Teng, Walkington, and Wang [67] have developed a
related algorithm, which will be discussed in some detail in Section 4.5.

4.2.1 Description of the Algorithm

Three-dimensional Delaunay refinement takes afacet-boundedPLC as its input. Tetrahedralized and unte-
trahedralized regions of space must be separated by facets so that, in the final mesh, any triangular face not
shared by two tetrahedra is a subfacet. The algorithm begins with an unconstrained Delaunay tetrahedral-
ization of the input vertices, momentarily ignoring the input segments and facets. As in two dimensions,
the tetrahedralization is then refined by inserting additional vertices into the mesh, using an incremental
Delaunay tetrahedralization method such as the Bowyer/Watson method [12, 93] or an edge/face flipping
method [52, 78], until all segments and facets are present and all constraints on tetrahedron quality are met.
Vertex insertion is governed by three rules.

� Thediametral sphereof a subsegment is the (unique) smallest sphere that contains the subsegment.
As in the two-dimensional algorithm, a subsegment is encroached if a vertex lies strictly inside its
diametral sphere, or if the subsegment does not appear in the tetrahedralization. Any encroached
subsegment that arises is immediately split by inserting a vertex at its midpoint. See Figure 4.9(a).

� Theequatorial sphereof a triangular subfacet is the (unique) smallest sphere that passes through the
three vertices of the subfacet. (Theequatorof an equatorial sphere is the circle defined by the same
three vertices.) A subfacet is encroached if a vertex lies strictly inside its equatorial sphere, or if the
subfacet is expected to appear in the tetrahedralization but does not. (More on this shortly.) Each
encroached subfacet is normally split by inserting a vertex at its circumcenter. However, if a new
vertex would encroach upon any subsegment, it is not inserted; instead, all the subsegments it would
encroach upon are split. See Figure 4.9(b).

� A tetrahedron is said to beskinnyif its circumradius-to-shortest edge ratio is larger than some bound
B. (By this definition, not all slivers are considered skinny.) Each skinny tetrahedron is normally split
by inserting a vertex at its circumcenter, thus eliminating the tetrahedron; see Figure 4.9(c). However,
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(a) (b) (c)

Figure 4.9:Three operations for three-dimensional Delaunay refinement. (a) Splitting an encroached sub-
segment. Dotted arcs indicate where diametral spheres intersect faces. The subsegment and the en-
croaching vertex could each be on the surface or in the interior of the mesh. (b) Splitting an encroached
subfacet. The triangular faces shown are subfacets of a larger facet, with tetrahedra (not shown) atop them.
A vertex in the equatorial sphere of a subfacet causes a vertex to be inserted at its circumcenter. Afterward,
all equatorial spheres (included the two illustrated) are empty. (c) Splitting a bad tetrahedron. A vertex is
inserted at its circumcenter.

if a new vertex would encroach upon any subsegment or subfacet, then it is not inserted; instead, all
the subsegments it would encroach upon are split. If the skinny tetrahedron is not eliminated as a
result, then all the subfacets its circumcenter would encroach upon are split. (A subtle point is that,
if the tetrahedron is eliminated by subsegment splitting, the algorithm should not split any subfacets
that appear during subsegment splitting, or the bounds proven in the next section will not be valid.
Lazy programmers beware.)

Encroached subsegments are given priority over encroached subfacets, which have priority over skinny
tetrahedra.

The first obvious complication is that if a facet is missing from the mesh, it is difficult to say what its
subfacets are. With segments there is no such problem; if a segment is missing from the mesh, and a vertex
is inserted at its midpoint, one knows unambiguously where the two resulting subsegments should be. It is
less clear how to identify subfacets that do not yet exist.

The solution is straightforward. For each facet, it is necessary to maintain a triangulation of its vertices,
independent from the tetrahedralization in which we hope its subfacets will eventually appear. By comparing
the triangles of a facet’s triangulation against the faces of the tetrahedralization, one can identify subfacets
that need help in forcing their way into the mesh. For each triangular subfacet in a facet triangulation, look
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Facet Triangulation

MeshPLC

Figure 4.10:The top illustrations depict a rectangular facet and its triangulation. The bottom illustrations
depict the facet’s position as an interior boundary of a PLC, and its progress as it is inserted into the tetra-
hedralization. Most of the vertices and tetrahedra of the mesh are omitted for clarity. The facet triangulation
and the tetrahedralization are maintained separately. Shaded triangular subfacets in the facet triangulation
(top center) are missing from the tetrahedralization (bottom center). The bold dashed line (bottom cen-
ter) represents a tetrahedralization edge that passes through the facet. Missing subfacets are forced into
the mesh by inserting vertices at their circumcenters (right, top and bottom). Each of these vertices is
independently inserted into both the triangulation and the tetrahedralization.

for a matching face in the tetrahedralization; if the latter is missing, insert a vertex at the circumcenter of
the subfacet (subject to rejection if subsegments are encroached), as illustrated in Figure 4.10. The vertex
is inserted into both the tetrahedralization and the facet triangulation. Similarly, midpoints of encroached
subsegments are inserted into the tetrahedralization and into each containing facet triangulation.

In essence, Ruppert’s algorithm uses the same procedure to recover segments. However, the process of
forming a “one-dimensional triangulation” is so simple that it passes unnoticed.

Which vertices of the tetrahedralization need to be considered in a facet triangulation? It is a fact, albeit
somewhat nonintuitive, that if a facet appears in a Delaunay tetrahedralization as a union of faces, then
the triangulation of the facet is determined solely by the vertices of the tetrahedralization that lie in the
plane of the facet. If a vertex lies close to a facet, but not in the same plane, it may cause a subfacet to be
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Figure 4.11:If a tetrahedron is Delaunay, the circumcircle of each of its faces is empty, because each face’s
circumcircle is a cross-section of the tetrahedron’s circumsphere.

missing (as in Figure 4.10), but it cannot affect the shape of the triangulation if all subfacets are present.
Why? Suppose a subfacet of a facet appears in the tetrahedralization. Then the subfacet must be a face of
a Delaunay tetrahedron. The subfacet’s circumcircle is empty, because its circumcircle is a cross-section
of the tetrahedron’s empty circumsphere, as illustrated in Figure 4.11. Therefore, if a facet appears in a
Delaunay tetrahedralization, it appears as a Delaunay triangulation. Because the Delaunay triangulation is
unique (except in nondegenerate cases), vertices that do not lie in the plane of the facet have no effect on
how the facet is triangulated.

Hence, each separately maintained facet triangulation need only consider vertices lying in the plane of
the facet. Furthermore, because each facet is segment-bounded, and segments are recovered (in the tetrahe-
dralization) before facets, each facet triangulation can safely ignore vertices that lie outside the facet (even
in the same plane). The requirements set forth in Section 4.1.1 ensure that all of the vertices and segments of
a facet must be explicitly identified in the input PLC. The only additional vertices to be considered are those
that were inserted on segments to force segments and other facets into the mesh. The algorithm maintains a
list of the vertices on each segment, ready to be called upon when a facet triangulation is initially formed.

Unfortunately, if a facet triangulation is not unique because of cocircularity degeneracies, then the fore-
going statement about extraplanar vertices having no effect on the triangulation does not apply. To be
specific, suppose a facet triangulation has four or more cocircular vertices, which are triangulated one
way, whereas the tetrahedralization contains a set of faces that triangulate the same vertices with a dif-
ferent (but also Delaunay) set of triangles, as illustrated in Figure 4.12. (If exact arithmetic is not used,
nearly-degenerate cases may team up with floating-point roundoff error to make this circumstance more
common.) An aggressive implementation might identify these cases and correct the facet triangulation so
that it matches the tetrahedralization (it is not always possible to force the tetrahedralization to match the tri-
angulation). However, inserting a new vertex at the center of the collective circumcircle is always available
as a lazy alternative.

To appreciate why I should choose this rather unusual method of forcing facets into the mesh, it is
worth comparing it with the most popular method [48, 96, 79]. In many tetrahedral mesh generators, facets
are inserted by identifying points where the edges of the tetrahedralization intersect a missing facet, and
inserting vertices at these points. The perils of so doing are illustrated in Figure 4.13. In the illustration,
a vertex is inserted where a tetrahedralization edge (bold dashed line) intersects the facet. Unfortunately,
the edge intersects the facet near one of the bounding segments of the facet, and the new vertex creates a
feature that may be arbitrarily small. Afterward, the only alternatives are to refine the tetrahedra near the
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Figure 4.12:A facet triangulation and a tetrahedralization may disagree due to cocircular vertices. This oc-
currence may be diagnosed and fixed as shown here, or a new vertex may be inserted at the circumcenter,
removing the degeneracy.

Figure 4.13:One may force a facet into a tetrahedralization by inserting vertices at the intersections of the
facet with edges of the tetrahedralization, but this method might create arbitrarily small features by placing
vertices close to segments.
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Figure 4.14:The relationship between the insertion radii of the circumcenter of an encroached subfacet
and the encroaching vertex. Crosses identify the location of an encroaching vertex having maximum dis-
tance from the nearest subfacet vertex. (a) If the encroached subfacet contains its own circumcenter, the
encroaching vertex is no further from the nearest vertex of the subfacet than

p
2 times the circumradius of

the subfacet. (b) If the encroached subfacet does not contain its own circumcenter, the encroaching vertex
may be further away.

new vertex to a small size, or to move or remove the vertex. Some mesh generators cope with this problem
by smoothing the vertices on each facet after the facet is competely inserted.

My facet insertion method does not insert such vertices at all. A vertex considered for insertion so close
to a segment is rejected, and a subsegment is split instead. This would not necessarily be true if edge-facet
intersections were considered for insertion, because such an intersection may be near a vertex lying on
the segment, and thus fail to encroach upon any subsegments. Subfacet circumcenters are better choices
because they are far from the nearest vertices, and cannot create a new small feature without encroaching
upon a subsegment.

Another advantage of my facet insertion method is that if a subfacet is missing from the mesh, there
must be a vertex inside its equatorial sphere, or in a degenerate case, several vertices on its equatorial
sphere. Hence, for the purposes of analysis, missing subfacets may be treated identically to facets that are
present but encroached. As in the two-dimensional case, the same is true for missing subsegments.

I shall pass implementation difficulties aside to analyze the algorithm. In analysis, however, subfacets
present another complication. It would be nice to prove, in the manner of Lemma 15, that whenever an
encroached subfacet is split at its circumcenter, the insertion radius of the newly inserted vertex is no worse
than

p
2 times smaller than the insertion radius of its parent. Unfortunately, this is not true for the algorithm

described above.

Consider the two examples of Figure 4.14. If a subfacet that contains its own circumcenter is encroached,
then the distance between the encroaching vertex and the nearest vertex of the subfacet is no more thanp
2 times the circumradius of the subfacet. This distance is maximized if the encroaching vertex lies at a

pole of the equatorial sphere (where thepolesare the two points of the sphere furthest from its equator), as
illustrated in Figure 4.14(a). However, if a subfacet that does not contain its own circumcenter is encroached,
the distance is maximized if the encroaching vertex lies on the equator, equidistant from the two vertices of
the longest edge of the subfacet, as in Figure 4.14(b). Even if the encroaching vertex is well away from the
equator, its distance from the nearest vertex of the subfacet can still be larger than

p
2 times the radius of

the equatorial sphere. (I have confirmed through my implementation that such cases do arise in practice.)
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Figure 4.15:An encroached subfacet f that contains neither its own circumcenter v nor the projection of
the encroaching vertex p onto the plane containing f .

Rather than settle for a looser guarantee on quality, one can make a small change to the algorithm that
will yield a

p
2 bound. Letf be an encroached subfacet that does not contain its own circumcenterv, as

illustrated in Figure 4.15. Leti andj be vertices off , with ij the edge that separatesf from v. Let p be the
vertex that encroaches uponf ; p will be the parent ofv if the algorithm attempts to insertv.

Let F be the facet that containsf . Let projF (p) be the orthogonal projection ofp onto the plane
containingF (and hencef ). If projF (p) lies on the same side ofij asf (or onij), there is no problem; the
ratio rp

rv
cannot be greater than

p
2. However, if projF (p) lies on the same side ofij asv (as illustrated),

there is no such guarantee.

In the latter case, however, one can show (with the following lemma) that there is some other subfacet
g of F that is encroached byp and contains projF (p). (There are two such subfacets if projF (p) falls on an
edge.) One can achieve the desired bound by modifying the algorithm to splitg first and delay the splitting
of f indefinitely.

Lemma 26 (Projection Lemma) Let f be a subfacet of the Delaunay triangulated facetF . Suppose that
f is encroached by some vertexp strictly inside the equatorial sphere off , but p does not encroach upon
any subsegment ofF . ThenprojF (p) falls within the facetF , andp encroaches upon a subfacet ofF that
containsprojF (p).

Proof: First, I prove that projF (p) falls insideF , using similar reasoning to that employed in Lemma 13.
Suppose for the sake of contradiction that projF (p) falls outside the facetF . Let c be the centroid off ; c
clearly lies insideF . Because all facets are segment-bounded, the line segment connectingc to projF (p)
must intersect some subsegments. Let S be the plane that containss and is orthogonal toF , as illustrated
in Figure 4.16(a).

Becausef is a Delaunay subfacet ofF , its circumcircle (in the plane ofF ) contains no vertices ofF .
However, its equatorial sphere may contain vertices—includingp—andf might not appear in the tetrahe-
dralization.

It is apparent thatp and projF (p) lie on the same side ofS, as the projection is defined orthogonally toF .
Say that a point isinsideS if it is on the same side ofS asc, andoutsideS if it is on the same side asp and
projF (p). Because the circumcenter off lies inF (Lemma 13), and the circumcircle off cannot enclose
the endpoints ofs (f is Delaunay inF ), the portion off ’s equatorial sphere outsideS lies entirely inside
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Figure 4.16:Two properties of encroached Delaunay subfacets. (a) If a vertex p encroaches upon a Delau-
nay subfacet f of a facet F , but its projection into the plane containing F falls outside F , then p encroaches
upon some subsegment s of F as well. (b) If a vertex p encroaches upon a subfacet f of a Delaunay trian-
gulated facet F , but does not encroach upon any subsegment of F , then p encroaches upon the subfacet(s)
g of F that contains projF (p).

the diametral sphere ofs (as the figure demonstrates). Becausep is strictly inside the equatorial sphere of
f , p also lies strictly within the diametral sphere ofs, contradicting the assumption thatp encroaches upon
no subsegment ofF .

It follows that projF (p) must be contained in some subfacetg of F . (The containment is not necessarily
strict; projF (p) may fall on an edge interior toF , and be contained in two subfacets.) To complete the proof
of the lemma, I shall show thatp encroaches upong. If f = g the result follows immediately, so assume
thatf 6= g.

Again, letc be the centroid off . The line segment connectingc to projF (p) must intersect some edge
e of the subfacetg, as illustrated in Figure 4.16(b). LetE be the plane that containse and is orthogonal to
F . Say that a point is on theg-side if it is on the same side ofE asg. Because the triangulation ofF is
Delaunay, the portion off ’s equatorial sphere on theg-side is entirely enclosed by the equatorial sphere of
g. The pointp lies on theg-side or inE (because projF (p) is contained ing), andp lies strictly within the
equatorial sphere off , so it must also lie strictly within the equatorial sphere ofg, and hence encroaches
upong. �

There is one case not covered by the Projection Lemma. Iff is missing, the closest encroaching vertexv
might lie precisely on the equatorial sphere off , and also lie precisely on the diametral sphere ofs, thereby
failing to encroachs. In this case, however, the circumcenter off precisely coincides with the midpoint of
s. Hence, the algorithm’s behavior will be no different than ifs were encroached byv.

One way to interpret the Projection Lemma is to imagine that the facetF is orthogonally extended to
infinity, so that each subfacet ofF defines an infinitely long triangular prism (Figure 4.17). Each subfacet’s
equatorial sphere dominates its prism, in the sense that the sphere contains any point in the prism that lies
within the equatorial sphere of any other subfacet ofF . If a vertexp encroaches upon any subfacet ofF ,
thenp encroaches upon the subfacet in whose prismp is contained. Ifp encroaches upon some subfacet of
F but is contained in none of the prisms, thenp also encroaches upon some boundary subsegment ofF .

In the latter case, any boundary subsegments encroached upon byp are split until none remains. The
Projection Lemma guarantees that any subfacets ofF encroached upon byp are eliminated in the process.
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Figure 4.17:Each subfacet’s equatorial sphere dominates the triangular prism defined by extending the
subfacet orthogonally.

On the other hand, if the vertexp is contained in the prism of a subfacetg, and no subsegments are
encroached, then splittingg is a good choice. Several new subfacets will appear, at least one of which
contains projF (p); if this subfacet is encroached, then it is split as well, and so forth until the subfacet
containing projF (p) is not encroached. The Projection Lemma guarantees that any other subfacets ofF
encroached upon byp (those that do not contain projF (p)) are eliminated in the process.

4.2.2 Proof of Termination

The proof of termination for the three-dimensional case is similar to that of the two-dimensional case.
Assume that in the input PLC, any two incident segments are separated by an angle of60� or greater. If
a segment meets a facet at one vertex, and the projection of the segment onto the facet (using a projection
direction orthogonal to the facet) intersects the interior of the facet, then the angle separating the segment
from the facet must be greater thanarccos 1

2
p
2

:
= 69:3�. If the projection of the segment does not intersect

the interior of the facet, the Projection Lemma implies that no vertex on the segment can encroach upon any
subfacet of the facet without also encroaching upon a boundary segment of the facet, so the60� separation
between segments is sufficient to ensure termination.

The condition for two incident facets is more complicated. If both facets are convex and meet at a
segment, then it is sufficient for the facets to be separated by a dihedral angle of90� or greater. In general,
the two facets must satisfy the followingprojection condition.

For any vertexv where two facetsF andG meet, let visv(F ) be the facet region ofF visible fromv,
and define visv(G) likewise. By definition, visv(F ) and visv(G) are incident facet regions. No point of the
orthogonal projection of visv(F ) ontoG may fall in the interior of visv(G). Another way to word it is to
say that visv(F ) is disjoint from the interior of the prism formed by projecting visv(G) orthogonally (recall
Figure 4.17). Formally, for any pointv onF \ G, the projection condition requires that projG(visv(F )) \
interior(visv(G)) = ;. This condition is equivalent to the converse condition, in whichF andG trade
places.
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The payoff of this restriction is that, by Lemma 26, no vertex in visv(F ) may encroach upon a subfacet
contained entirely in visv(G) without also encroaching upon a subsegment ofG or a subfacet ofG not
entirely in visv(G). The converse is also true. The purpose of this condition is to prevent any vertex from
splitting a subfacet in an incident facet region. Otherwise, subfacets might be split to arbitrarily small sizes
through mutual encroachment in regions arbitrarily close tov.

The projection condition just defined is always satisfied by two facets separated by a dihedral angle of
exactly90�. It is also satisfied by facets separated by a dihedral angle greater than90� if the facets meet
each other only at segments whose endpoints are not reflex vertices of either facet. (Recall Figure 4.6, which
depicts two facets that are separated by a dihedral angle greater than90� but fail the projection condition
becausev is a reflex vertex ofF .)

The following lemma, which extends Lemma 15 to three dimensions, is true for the Delaunay refinement
algorithm described heretofore, if one is careful never to split an encroached subfacetf that contains neither
its own circumcenter nor the projection projf (p) of the encroaching vertexp. (Even more liberally, an
implementation can easily measure the insertion radii of the parent and its potential progeny, and may split
f if the latter is no less than1p

2
times the former.)

The insertion radius is defined as before:rv is the length of the shortest edge incident tov immediately
afterv is inserted. The parent of a vertex is defined as before, with the following amendments. Ifv is the
circumcenter of a skinny tetrahedron, its parentp(v) is the most recently inserted endpoint of the shortest
edge of that tetrahedron. Ifv is the circumcenter of an encroached subfacet, its parent is the encroaching
vertex closest tov (whether that vertex is inserted or rejected).

Lemma 27 Let v be a vertex of the mesh, and letp = p(v) be its parent, if one exists. Then eitherrv �
lfs(v), or rv � Crp, where

� C = B if v is the circumcenter of a skinny tetrahedron,

� C = 1p
2

if v is the midpoint of an encroached subsegment or the circumcenter of an encroached
subfacet, andp is rejected for insertion,

� C = 1
2 cos� if v andp lie on incident segments separated by an angle of�, or if v lies in the interior

of a facet incident to a segment containingp at an angle�, where45� � � < 90�,

� C = sin� if v andp are positioned as in the previous case, but with� � 45�, and

� C = sin�p
2

if v andp lie within facet regions that are incident at a segmentS, if projS(p) lies withinS
(this case is included only to demonstrate why it should be avoided),

or v andp lie within incident facet regions that do not meet at a segmentS for whichprojS(p) lies withinS.
For this case (which should also be avoided), I offer no analysis.

If one thinks of a subsegment’s midpoint as its circumcenter, one can see this lemma as having a hi-
erarchical form: if the circumcenter of a simplex encroaches upon a lower-dimensional simplex, then the
circumcenter is rejected for insertion, and the circumcenter of the lower-dimensional simplex has an inser-
tion radius up to

p
2 times smaller than that of the rejected circumcenter. If the circumcenter of a simplex

encroaches upon another simplex having equal or higher dimension, then the circumcenter of the latter has
an insertion radius that depends in part on the angle between the two simplices. I expect this framework to
generalize to higher dimensions, and will elaborate in Section 4.7.
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Proof of Lemma 27: If v is an input vertex, the circumcenter of a tetrahedron, or the midpoint of an
encroached subsegment, then it may be treated exactly as in Lemma 15. One case from that lemma is worth
briefly revisiting to show that nothing essential has changed.

If v is inserted at the midpoint of an encroached subsegments, and its parentp = p(v) is a circumcenter
(of a tetrahedron or subfacet) that was considered for insertion but rejected because it encroaches upons,
thenp lies strictly inside the diametral sphere ofs. Because the circumsphere/circumcircle centered atp
contains no vertices, and in particular does not contain the endpoints ofs, rv >

rpp
2
; see Figure 4.18(a) for

an example where the relation is nearly equality. Note that the change from circles (in the two-dimensional
analysis) to spheres makes little difference. Perhaps the clearest way to see this is to observe that if one
takes a two-dimensional cross-section that passes throughs andp, the cross-section is indistinguishable
from the two-dimensional case. (The same argument can be made for the case wherep andv lie on incident
segments.)

Only the circumstance wherev is the circumcenter of an encroached subfacetf remains. LetF be the
facet that containsf . There are four cases to consider.

� If the parentp is an input vertex, or lies in a segment or facet region not incident to any facet region
containingv, then lfs(v) � rv.

� If p is a tetrahedron circumcenter that was considered for insertion but rejected because it encroaches
uponf , thenp lies strictly inside the equatorial sphere off . Because the tetrahedralization is Delau-
nay, the circumsphere centered atp contains no vertices, so its radius is limited by the nearest vertex
of f . By assumption,f contains either its own circumcenter or projf (p). In the former case,rvrp is
minimized whenp is at the pole off ’s equatorial sphere, as illustrated in Figure 4.18(b). In the latter
case,rvrp is minimized when projf (p) is the intersection off ’s longest edge and the bisector of its

second-longest edge, as illustrated in Figure 4.18(c). In either case,rv >
rpp
2
.

� If p was inserted on a segment that is incident toF at one vertexa, separated by an angle of� � 45�

(Figure 4.18(d)), the shared vertexa cannot lie inside the equatorial sphere off because the facetF
is Delaunay. (This is true even iff does not appear in the tetrahedralization.) Because the segment
and facet are separated by an angle of�, the angle\pav is at least�. Becausef is encroached upon
by p, p lies inside its equatorial sphere. (Iff is not present in the tetrahedralization,p might lie on
its equatorial sphere in a degenerate case.) Analogously to the case of two incident segments (see
Lemma 15), if� � 45�, then rv

rp
is minimized when the radius of the equatorial sphere isrv = jvpj,

andp lies on the sphere. (If the equatorial sphere were any smaller, it could not containp.) Therefore,
rv � rp

2 cos� . If � � 45�, then rv
rp

is minimized whenv = projf (p); therefore,rv � rp sin�.

� If p and v lie within two facet regions that are incident at a segmentS, the analysis is less opti-
mistic than the previous case because there is no vertex that serves the function thata serves in
Figure 4.18(d). As Figure 4.19 shows, the equatorial sphere centered atv is not constrained by the
segmentS (although it is constrained by the vertices onS).

To find the minimum possible value ofrvrp , consider the point projS(p), which (by assumption) lies
on some subsegments of the segmentS. Let d be the distance fromp to projS(p). Becausep does
not encroach upons (otherwise, the algorithm would splits in preference tof ), the smallest possible
value of drp is 1p

2
.

In the absence of any constraints,rv = jvpj is minimized whenv = projF (p), with the line segment
vp orthogonal toF . With this choice ofv, the angle\p[projS(p)]v is precisely the dihedral angle�
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Figure 4.18:The relationship between the insertion radii of a child and its parent. (a) When a subsegment
is encroached upon by a circumcenter, the child’s insertion radius may be arbitrarily close to a factor of

p
2

smaller than its parent’s. (b) When a subfacet that contains its own circumcenter is encroached upon by
the circumcenter of a skinny tetrahedron, the child’s insertion radius may be arbitrarily close to a factor ofp
2 smaller than its parent’s. (c) A bound better than

p
2 applies to a subfacet that does not contain its own

circumcenter, but does contain the projection of the encroaching vertex. (d) When a subfacet is encroached
upon by the midpoint of a subsegment, and the corresponding facet and segment are incident at one vertex,
the analysis differs little from the case of two incident segments.

separating the two facets. Hence, the minimum value ofrv
d is sin�. Combining this with the result

of the previous paragraph,rvrp � sin�p
2

. Note that, unlike the case where a segment meets a facet or
another segment, the worst case is not achieved withp on the equatorial sphere off for any angle less
than90�. �

Lemma 27 provides the information one needs to ensure that Delaunay refinement will terminate. As
with the two dimensional algorithms, the key is to prevent any cycle wherein mesh vertices beget chains of
descendants with ever-smaller insertion radii (Figure 4.20).

Mesh vertices are divided into four classes: input vertices (which cannot contribute to cycles), vertices
inserted into segments, vertices inserted into facet interiors, and free vertices inserted at circumcenters of



Generalization of Ruppert’s Algorithm to Three Dimensions 101

rvrp
rp

(p)projS

v

F

p

dS

s

Figure 4.19:When two incident facet regions are separated by an angle less than 90�, and a subfacet of
one is encroached upon by a vertex in the interior of the other, the child’s insertion radius rv may be smaller
than its parent’s insertion radius rp. Hence, a 90� minimum separation is imposed.
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Figure 4.20:Dataflow diagram illustrating the worst-case relation between a vertex’s insertion radius and
the insertion radii of the children it begets. If no cycle has a product smaller than one, the three dimensional
Delaunay refinement algorithm will terminate.
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tetrahedra. As we have seen, free vertices can father facet vertices whose insertion radii are smaller by a
factor of

p
2, and these facet vertices in turn can father segment vertices whose insertion radii are smaller by

another factor of
p
2. Hence, to avoid spiralling into the abyss, it is important that segment vertices can only

father free vertices whose insertion radii are at least twice as large. This constraint fixes the best guaranteed
circumradius-to-shortest edge ratio atB = 2.

The need to prevent diminishing cycles also engenders the requirement that incident segments be sep-
arated by angles of60� or more, just as it did in the two-dimensional case. A segment incident to a facet
must be separated by an angle of at leastarccos 1

2
p
2

:
= 69:3� so that if a vertex on the segment encroaches

upon a subfacet of the facet, the child that results will have an insertion radius at least
p
2 larger than that of

its parent. (Recall from Lemma 27 thatrv � rp
2 cos� .)

Theorem 28 Let lfsmin be the shortest distance between two nonincident entities (vertices, segments, or
facets) of the input PLC. Suppose that any two incident segments are separated by an angle of at least60�,
any two incident facet regions satisfy the projection condition, and any segment incident to a facet at one
vertex is separated from it by an angle of at leastarccos 1

2
p
2

or satisfies the projection condition.

Suppose a tetrahedron is considered to be skinny if its circumradius-to-shortest edge ratio is larger than
B � 2. The three-dimensional Delaunay refinement algorithm described above will terminate, with no
tetrahedralization edge shorter thanlfsmin.

Proof: Suppose for the sake of contradiction that the algorithm introduces one or more edges shorter than
lfsmin into the mesh. Lete be the first such edge introduced. Clearly, the endpoints ofe cannot both be
input vertices, nor can they lie on nonincident segments or facet regions. Letv be the most recently inserted
endpoint ofe.

By assumption, no edge shorter than lfsmin existed beforev was inserted. Hence, for any ancestora of
v, ra � lfsmin. Let p = p(v) be the parent ofv, let g = p(p) be the grandparent ofv (if one exists), and let
h = p(g) be the great-grandparent ofv (if one exists). Because of the projection condition,v andp cannot
lie on incident facet regions. Consider the following cases.

� If v is the circumcenter of a skinny tetrahedron, then by Lemma 27,rv � Brp � 2rp.

� If v is the midpoint of an encroached subsegment or the circumcenter of an encroached subfacet, and
p is the circumcenter of a skinny tetrahedron, then by Lemma 27,rv � 1p

2
rp � Bp

2
rg �

p
2rg.

� If v is the midpoint of an encroached subsegment,p is the circumcenter of an encroached subfacet,
andg is the circumcenter of a skinny tetrahedron, then by Lemma 27,rv � 1p

2
rp � 1

2rg � B
2 rh � rh.

� If v andp lie on incident segments, then by Lemma 27,rv � rp
2 cos� . Because� � 60�, rv � rp.

� If v is the circumcenter of an encroached subfacet andp lies on a segment incident (at a single vertex)
to the facet containingv, then by Lemma 27,rv � rp

2 cos� . Because� � arccos 1
2
p
2
, rv �

p
2rp.

� If v is the midpoint of an encroached subsegment,p is the (rejected) circumcenter of an encroached
subfacet, andg lies on a segment incident (at a single vertex) to the facet containingp, then by
Lemma 27,rv � 1p

2
rp � 1

2
p
2 cos�

rg. Because� � arccos 1
2
p
2
, rv � rg.



Generalization of Ruppert’s Algorithm to Three Dimensions 103

� If v is the midpoint of an encroached subsegment, andp has been inserted on a nonincident segment
or facet region, then by the definition of parent,pv is the shortest edge introduced by the insertion of
v. Becausep andv lie on nonincident entities,p andv are separated by a distance of at least lfsmin,
contradicting the assumption thate has length less than lfsmin.

In the first six cases,rp � ra for some ancestora of p in the mesh. It follows thatrp � lfsmin, contradicting
the assumption thate has length less than lfsmin. Because no edge shorter than lfsmin is ever introduced, the
algorithm must terminate. �

4.2.3 Proof of Good Grading

As with the two-dimensional algorithm, a stronger termination proof is possible, showing that all edges
in the final mesh are proportional in length to the local feature sizes of their endpoints, and thus ensuring
nicely graded meshes. The proof makes use of Lemma 17, which generalizes unchanged to three or more
dimensions. Recall that the lemma states that ifrv � Crp for some vertexv with parentp, then their

lfs-weighted vertex densities are related by the formulaDv = lfs(v)
rv

� 1 +
Dp

C .

Lemma 29 Suppose the quality boundB is strictly larger than2, and all angles between segments and
facets satisfy the conditions listed in Theorem 28, with all inequalities replaced by strict inequalities.

There exist fixed constantsDT � 1, DF � 1, andDS � 1 such that, for any vertexv inserted (or
rejected) at the circumcenter of a skinny tetrahedron,Dv � DT ; for any vertexv inserted (or rejected) at
the circumcenter of an encroached subfacet,Dv � DF ; and for any vertexv inserted at the midpoint of an
encroached subsegment,Dv � DS . Hence, the insertion radius of every vertex is proportional to its local
feature size.

Proof: Consider any non-input vertexv with parentp = p(v). If p is an input vertex, thenDp = lfs(p)
rp

� 1.
Otherwise, assume for the sake of induction that the lemma is true forp. Hence,Dp � maxfDT ;DF ; DSg.

First, supposev is inserted or considered for insertion at the circumcenter of a skinny tetrahedron. By
Lemma 27,rv � Brp. Therefore, by Lemma 17,Dv � 1 + maxfDT ;DF ;DSg

B : It follows that one can prove
thatDv � DT if DT is chosen so that

DT � 1 +
maxfDT ;DF ;DSg

B
: (4.1)

Second, supposev is inserted or considered for insertion at the circumcenter of a subfacetf . If its parent
p is an input vertex or lies on a segment or facet region not incident to the facet region containingv, then
lfs(v) � rv, and the theorem holds. Ifp is the circumcenter of a skinny tetrahedron (rejected for insertion
because it encroaches uponf ), rv � rpp

2
by Lemma 27, so by Lemma 17,Dv � 1 +

p
2DT .

Alternatively, if p lies on a segment incident to the facet containingf , thenrv � rp
2 cos� by Lemma 27,

and thus by Lemma 17,Dv � 1 + 2DS cos�. It follows that one can prove thatDv � DF if DF is chosen
so that

DF � 1 +
p
2DT ; and (4.2)

DF � 1 + 2DS cos�: (4.3)
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Third, supposev is inserted at the midpoint of a subsegments. If its parentp is an input vertex or lies
on a segment or facet region not incident to the segment containings, then lfs(v) � rv, and the theorem
holds. Ifp is the circumcenter of a skinny tetrahedron or encroached subfacet (rejected for insertion because
it encroaches upons), rv � rpp

2
by Lemma 27, so by Lemma 17,Dv � 1 +

p
2max fDT ;DF g.

Alternatively, ifp andv lie on incident segments, thenrv � rp
2 cos� by Lemma 27, and thus by Lemma 17,

Dv � 1 + 2DS cos�. It follows that one can prove thatDv � DS if DS is chosen so that

DS � 1 +
p
2maxfDT ;DF g and (4.4)

DS � 1 + 2DS cos�: (4.5)

If the quality boundB is strictly larger than2, conditions 4.1, 4.2, and 4.4 are simultaneously satisfied
by choosing

DT =
B + 1 +

p
2

B � 2
; DF =

(1 +
p
2)B +

p
2

B � 2
; DS =

(3 +
p
2)B

B � 2
:

If the smallest angle�FS between any facet and any segment is strictly greater thanarccos 1
2
p
2

:
= 69:3�,

conditions 4.3 and 4.4 may be satisfied by choosing

DF =
1 + 2 cos�FS

1� 2
p
2 cos�FS

; DS =
1 +

p
2

1� 2
p
2 cos�FS

;

if these values exceed those specified above. In this case, adjustDT upward if necessary according to
condition 4.1.

If the smallest angle�SS between two segments is strictly greater than60�, condition 4.5 may be satis-
fied by choosing

DS =
1

1� 2 cos�SS
;

if this value exceeds those specified above. In this case, adjustDT andDF upward if necessary according
to conditions 4.1 and 4.2. �

Note that asB approaches2, �SS approaches60�, or �FS approachesarccos 1
2
p
2
, the values ofDT ,

DF , andDS approach infinity.

Theorem 30 For any vertexv of the output mesh, the distance to its nearest neighbor is at leastlfs(v)
DS+1 .

Proof: Inequality 4.4 indicates thatDS is larger thanDT andDF . The remainder of the proof is identical
to that of Theorem 19. �

To provide an example, supposeB = 2:5 and the input PLC has no acute angles. ThenDT
:
= 9:8,

DF
:
= 14:9, andDS

:
= 22:1. Hence, the spacing of vertices is at worst about23 times smaller than the local

feature size.

As Figure 4.21 shows, the algorithm performs much better in practice. The upper left mesh is the initial
tetrahedralization after all segments and facets are inserted and unwanted tetrahedra have been removed from
the holes. (Some subsegments remain encroached because during the segment and facet insertion stages,
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Initial tetrahedralization after segment and facet
insertion. 54 vertices, 114 tetrahedra.

B = 1:4, �min = 5:42�, �max = 171:87�,
hmin = 1:25, 110 vertices, 211 tetrahedra.

B = 1:2, �min = 2:01�, �max = 175:89�,
hmin = 0:5, 468 vertices, 1206 tetrahedra.

B = 1:1, �min = 0:69�, �max = 178:83�,
hmin = 0:36, 1135 vertices, 3752 tetrahedra.

B = 1:05, �min = 1:01�, �max = 178:21�,
hmin = 0:24, 2997 vertices, 11717 tetrahedra.

B = 1:04, �min = 1:01�, �max = 178:21�,
hmin = 0:13, 5884 vertices, 25575 tetrahedra.

Figure 4.21:Several meshes of a 10� 10� 10 PLC generated with different bounds (B) on quality. Below
each mesh is listed the smallest dihedral angle �min, the largest dihedral angle �max, and the shortest edge
length hmin. The algorithm does not terminate on this PLC for a bound of B = 1:03.
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Figure 4.22:At left, a mesh of a truncated cube. At right, a cross-section through a diagonal of the top face.

Figure 4.23:A counterexample demonstrating that the three-dimensional Delaunay refinement algorithm is
not size-optimal.

my implementation only splits an encroached subsegment if it is missing or it is part of the facet currently
being inserted.) After all encroached subsegments and subfacets have been split (upper right), the largest
circumradius-to-shortest edge ratio is already less than1:4, which is much better than the proven bound of
2. The shortest edge length is1:25, and lfsmin = 1, so the spectre of edge lengths23 times smaller than
the local feature size has not materialized. As the quality boundB decreases, the number of elements in the
final mesh increases gracefully untilB drops below1:05. At B = 1:03, the algorithm fails to terminate.

Not surprisingly, the object depicted is slightly harder to tetrahedralize if the unwanted tetrahedra are
not removed from the holes before refining. AtB = 1:06, the algorithm fails to terminate.

Figure 4.22 offers a demonstration of the grading of a tetrahedralization generated by Delaunay refine-
ment. A cube has been truncated at one corner, cutting off a portion whose width is one-millionth that of
the cube. Although this mesh satisfies a quality bound ofB = 1:2, good grading is very much in evidence.

Unfortunately, the proof of good grading does not yield a size-optimality proof as it did in the two-
dimensional case. Gary Miller and Dafna Talmor (private communication) have pointed out the coun-
terexample depicted in Figure 4.23. Inside this PLC, two segments pass very close to each other without
intersecting. The PLC might reasonably be tetrahedralized with a few dozen tetrahedra having bounded
circumradius-to-shortest edge ratios, if these tetrahedra include a sliver tetrahedron whose four vertices
are the endpoints of the two internal segments. However, the best my Delaunay refinement algorithm can
promise is to fill the region with tetrahedra whose edge lengths are proportional to the distance between the
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two segments. Because this distance may be arbitrarily small, the algorithm is not size-optimal.

4.3 Delaunay Refinement with Equatorial Lenses

In this section, I improve the Delaunay refinement algorithm by replacing equatorial spheres with equatorial
lenses, which are similar to the Chew-inspired diametral lenses introduced in Section 3.4. This modification
ensures that the algorithm terminates and produces well-graded meshes for any bound on circumradius-to-
shortest edge ratio greater than2

p
2p
3

:
= 1:63, which is a significant improvement over the bound of two given

for Delaunay refinement with equatorial spheres.

4.3.1 Description of the Algorithm

My lens-based algorithm begins with the Delaunay tetrahedralization of a facet-bounded PLC, and performs
Delaunay refinement with locked subsegments and subfacets. A constrained Delaunay tetrahedralization
would be ideal if one could be generated, but this is not generally possible, so the algorithm attempts to
recover all missing segments first, and then all missing facets, locking each subsegment and subfacet as
soon as it appears.

Just as in the three-dimensional generalization of Ruppert’s algorithm, subsegments are protected by
diametral spheres. Missing subfacets are protected by equatorial spheres, but any subfacet that is present
in the tetrahedralization is protected only by an equatorial lens, illustrated in Figure 4.24. The equatorial
lens of a subfacetf is the intersection of two balls whose centers lie on each other’s boundaries, and whose
boundaries intersect at the circumcircle off . If rf is the circumradius off , the defining balls have radius
2rf=

p
3, and their centers lie on the line orthogonal tof through its circumcenter, a distance ofrf=

p
3

from f . An equatorial lens is the revolution of a diametral lens about its shorter axis. Unlike in the two-
dimensional case, it does not seem to be possible to achieve a result analogous to Lemma 21 for a lens angle
smaller than30�, so I shall use a lens angle of30� throughout.

The subfacetf is considered for splitting if there is a vertex, or an attempt to insert a vertex, inside
or on the boundary of its equatorial lens, unless another subfacet obstructs the line of sight between the
encroaching vertex and the circumcenter off . (Throughout this section, visibility is deemed to be obstructed
only by interposing subfacets, and only if they are present in the mesh, and thus locked.) As usual, if
the circumcenter off encroaches upon any subsegments, the encroached subsegments are split instead.
However, iff is split, all free vertices (but not input vertices or vertices that lie on segments or facets) that
lie in the interior of the equatorial sphere off and are visible from the circumcenter off are deleted. Then,
a new vertex is inserted at the circumcenter off , as illustrated in Figure 4.25. The Delaunay property is
maintained throughout, except that locked subfacets are not flipped. Hence, the final mesh is not guaranteed
to be truly Delaunay, but is effectively constrained Delaunay.

As in two dimensions, the advantage of lenses is that when a vertexv with parentp is inserted at the
center of a lens, its insertion radius is bounded by the inequalityrv � rp cos 30

� =
p
3
2 rp. As in the three-

dimensional generalization of Ruppert’s algorithm, the bound is only ensured if the algorithm refuses to split
any subfacet that contains neither its own circumcenter nor the orthogonal projection of the encroaching
vertex.

Here a new problem arises. Suppose a facetF contains a subfacetf whose equatorial lens is encroached
upon by a vertexp, butf contains neither its own circumcenter nor projF (p). Letg be the subfacet ofF that



108 Jonathan Richard Shewchuk

30o 30o

30o 30o

Side view. Top view.

Figure 4.24:The equatorial lens (shaded) of a triangular subfacet is the intersection of two identical balls
whose boundaries meet at the subfacet’s circumcircle. Each ball’s center lies on the surface of the other
ball.

Figure 4.25:At left, the circumcenter of the bold tetrahedron encroaches upon the equatorial lens of the
bold subfacet. At right, all vertices in the subfacet’s equatorial sphere have been deleted, and a new vertex
has been inserted at the subfacet’s circumcenter.
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contains projF (p). One would like to have a guarantee, similar to the Projection Lemma, that the equatorial
lens ofg is encroached upon byp. Unfortunately, there is no such guarantee.

Fortunately, the next section will show that the inequalityrv �
p
3
2 rp holds if v is the circumcenter of

g, even ifg is not encroached. Hence, the rule governing subfacet encroachment remains unchanged: if an
encroached subfacet contains neither its own circumcenter nor the orthogonal projection of the encroaching
vertex, then the subfacet containing the orthogonal projection is split instead.

The guarantees offered by the Projection Lemma are just as useful for understanding Delaunay refine-
ment with equatorial lenses as they were with equatorial spheres. Supposep encroaches upon the equatorial
lens off . Because the equatorial lens off is contained in the equatorial sphere off , p encroaches upon
f ’s equatorial sphere as well. Because the modified algorithm still uses diametral spheres to protect subseg-
ments, the Projection Lemma implies that eitherp encroaches upon a subsegment, or projF (p) lies withinF .
In the former case, the encroached subsegment is split instead off ; in the latter case, the Projection Lemma
guarantees that some subfacet ofF contains projF (p). Furthermore, the Projection Lemma guarantees that
if one repeatedly splits the subfacet containing projF (p), F will eventually contain no subfacets whose equa-
torial spheres are encroached, and thus also guarantees thatF will eventually contain no subfacets whose
equatorial lenses are encroached.

4.3.2 Proof of Termination and Good Grading

The three-dimensional Delaunay refinement algorithm with equatorial lenses, like Chew’s algorithm, re-
quires for its analysis that the insertion radiusrc of the circumcenterc of a skinny tetrahedront be redefined
to be the radius oft’s circumsphere. A vertexw may lie int’s circumsphere, but only if there is some locked
subfacetf separatingw from t. Eitherc lies on the same side off ast, and thus never interacts withw, or
c lies on the same side off asw, but is not inserted because it encroaches uponf . Either way,c does not
participate in an edge shorter thanrc. Does the notion of separation become ambiguous near the boundaries
of a facet? No, because facets are segment-bounded, and all subsegments are protected by diametral spheres.

When a subfacetf is encroached, but no subsegment is encroached, the algorithm may choose to split
the subfacetg that contains projF (p). The following lemma shows that this choice produces a new vertex
whose insertion radius is not much smaller than that of its parent.

Lemma 31 Letf be a subfacet of a facetF . Letp be a tetrahedron circumcenter that encroaches upon the
equatorial lens off , and whose projectionprojF (p) falls in some subfacetg of F (whereg may or may not
bef ). Suppose that all vertices in the equatorial sphere ofg are deleted (except those not visible from the
circumcenter ofg), and a vertexv is inserted at the circumcenter ofg. Thenrv �

p
3
2 rp.

Proof: Because all vertices visible fromv are deleted from the equatorial sphere ofg, rv is equal to the
radius of that equatorial sphere. (Vertices not visible fromv cannot affectv’s insertion radius, because an
edge cannot connect them tov.)

Without loss of generality, define a coordinate system oriented so thatF lies in thex-y plane, projF (p)
has the samey-coordinate as the circumcenterc of f (for instance, both might lie on thex-axis), andp is
aboveF , as illustrated in Figure 4.26.

LetO be the lower of the two balls that define the equatorial lens off . LetC be the center ofO, and let
R be the radius ofO. The line segmentCc is aligned with thez-axis and has lengthR2 . The line segment
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Figure 4.26:Three views of an encroached equatorial lens.

c[projF (p)] is aligned with thex-axis; letm be its length. The line segmentp[projF (p)] is orthogonal toF ,
and thus aligned with thez-axis; leth (for “height”) be its length, as Figure 4.26(b) illustrates.

Draw a chord of the circumcircle off whose midpoint is projF (p). As Figure 4.26(c) shows, the chord
is orthogonal to the line segmentc[projF (p)], and thus aligned with they-axis. Let2d be the length of the
chord, so that projF (p) bisects the chord into two line segments of lengthd.

The significance ofd is that it is a lower bound onrv, wherev is the circumcenter of the subfacetg.
Why? Recall thatg contains projF (p). However, becauseF is Delaunay, none of the vertices ofg can
lie inside the circumcircle off . The circumcircle ofg must be large enough that it can satisfy both these
constraints; the smallest possible such circumcircle is outlined in bold in Figure 4.26(c), and has radiusd.

As Figure 4.26(b) makes apparent, thex-coordinate ofp differs from that ofC by m, and theirz-
coordinates differ byR2 + h. Becausep encroaches upon the equatorial lens off , p lies inside or on the
boundary ofO. Hence, by Pythagoras’ Law,

m2 +

�
R

2
+ h

�2

� R2:

Expanding gives

m2 +

�
R

2

�2

+Rh+ h2 � R2: (4.6)
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Figure 4.27:Because p lies in the diametral lens, its height above the plane cannot be more than 1p
3

times
the circumradius of the triangle that contains projF (p).

Each endpoint of the chord in Figure 4.26(c) lies on the boundary ofO, so by Pythagoras’ Law,

m2 + d2 +

�
R

2

�2

= R2: (4.7)

Subtracting Equation 4.7 from Inequality 4.6 gives

Rh+ h2 � d2:

As Figure 4.26(b) shows, it is always true thath � R
2 , because the equatorial lens off does not extend

further thanR2 from the plane containingF . Recall thatd is a lower bound onrv. Combining these bounds,

r2v � d2 � Rh+ h2 � 3h2:

Let w be the vertex ofg nearest projF (p), as illustrated in Figure 4.27. Because projF (p) lies within g
and the circumradius ofg is rv, the lengthjw[projF (p)]j is at mostrv. The vertexp is the circumcenter of
a constrained Delaunay tetrahedron; because the circumsphere of this tetrahedron contains no vertex ofF ,
rp can be no greater than the distancejpwj. This distance can be computed by Pythagoras’ Law, because
w[projF (p)] is orthogonal top[projF (p)] (the former lies inF , whereas the latter is orthogonal toF ). Hence,

r2p � jw[projF (p)]j2 + jp[projF (p)]j2
� r2v + h2

� 4

3
r2v :

Therefore, rp � 2p
3
rv;

and the result follows. �

Lemma 31 is only applicable if all the vertices in the equatorial sphere ofg that are visible fromv are
deleted. If some such vertexu is not deleted, thenu is an input vertex or lies on a subsegment or subfacet.
The verticesu andv cannot lie on incident features, because of the60� minimum angle between input
entities and the projection condition between input facets. (The edge of a lens rises from the plane at an
angle of60�.) Hence, the local feature size atv is at mostjuvj, andrv � lfs(v), as Lemma 27 indicates.
Choose the input vertex, segment vertex, or facet vertex closest tov to be the parent ofv.

Vertices are only deleted when a subfacet is split, and vertices are never deleted from subfacets. Theo-
rem 28 sets a lower bound on the length of each facet edge, so only a finite number of subfacet splits can
occur. After the last subfacet split, no more vertex deletions occur, so termination is ensured by Theorem 28.
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Theorem 32 Suppose the quality boundB is strictly larger than2
p
2p
3

, and all angles between segments and
facets satisfy the conditions listed in Theorem 28, with all inequalities replaced by strict inequalities.

There exist fixed constantsDT � 1, DF � 1, andDS � 1 such that, for any vertexv inserted (or
rejected) at the circumcenter of a skinny tetrahedron,Dv � DT ; for any vertexv inserted (or rejected) at
the circumcenter of an encroached subfacet,Dv � DF ; and for any vertexv inserted at the midpoint of an
encroached subsegment,Dv � DS .

Proof: Essentially the same as the proof of Lemma 29, except that Lemma 31 makes it possible to replace
Condition 4.2 with

DF � 1 +
2p
3
DT (4.8)

If the quality boundB is strictly larger than2
p
2

3 , Conditions 4.1, 4.4, and 4.8 are simultaneously satisfied
by choosing

DT =

p
3B +

p
3 +

p
6p

3B � 2
p
2

; DF =
(2 +

p
3)B + 2p

3B � 2
p
2

; DS =
(
p
3 +

p
6 + 2

p
2)Bp

3B � 2
p
2

:

DT , DF , andDS must also satisfy the conditions specified in Lemma 29 regarding the angles between
segments and facets and between segments. IfB > 2

p
2

3 , �FS > arccos 1
2
p
2
, and�SS > 60�, there are

values ofDT , DF , andDS that satisfy the theorem. �

To compare equatorial lenses with equatorial spheres, consider again tetrahedralizing a PLC with no
acute angles, applying a quality bound ofB = 2:5. Using equatorial lenses,DT

:
= 5:7, DF

:
= 7:5, and

DS
:
= 11:7. Compare with the corresponding values9:8, 14:9, and22:1 derived for equatorial spheres

at the end of Section 4.2.3. Hence, the worst-case vertex spacing for Delaunay refinement with equatorial
lenses is a factor of1:8 better than with equatorial spheres. Because the number of tetrahedra is inversely
proportional to the cube of vertex spacing, equatorial lenses improve the worst-case cardinality of the mesh
by a factor of about six.

Equatorial lenses have another advantage. With some effort, it is possible to show that if the dihedral
angle separating two incident facet regions is60� or more, a vertex in one facet region cannot encroach
upon a subfacet of the other without encroaching upon a subsegment of the other. (Details are omitted.)
However, because equatorial spheres must be used for missing subfacets, this fact does not lead to as nice a
bound on edge lengths as one might hope. Given a PLC whose incident facets are separated by at least60�,
it is possible to show that Delaunay refinement will terminate if facets are recovered one at a time, but as
Lemma 27 indicates, each successively recovered facet may have smaller edges than the previously inserted
facet if it is encroached upon by vertices of the previous facet. The length of the shortest edge in the final
mesh may be exponentially small, where the exponent is proportional to the number of facets. Section 5.3.1
suggests a facet recovery method that might partly ameliorate this problem.

4.3.3 Diametral Lemons?

The success of diametral lenses in two dimensions, and equatorial lenses in three, naturally leads one to ask
whether it might be possible to further improve the quality bound by replacing diametral spheres with some
smaller structure. The obvious choice, depicted in Figure 4.28, is the revolution of a diametral lens about its
longer axis, yielding a pointed prolate spheroid I call adiametral lemon.
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Figure 4.28:The diametral lemon of a subsegment is the revolution of a diametral lens about the subseg-
ment.

f

s
p

g

v f v
g

p

Top view. Side view.

Figure 4.29:An example demonstrating that diametral lemons don’t seem to improve the quality bound. In
this illustration, the diametral lemon of s is contained in the equatorial lens of f .

Alas, diametral lemons are lemons indeed, because they do not seem to improve the worst-case ratio
of
p
2 between the insertion radii of a facet vertex and a subsegment vertex it spawns. An example that

demonstrates this failure is illustrated in Figure 4.29. A subfacetf meets another subfacetg at a subsegment
s. The circumcenter off coincides with the midpoint ofs. The equatorial lens off extends beyond the
diametral lemon ofs, and oddly,f can be encroached upon by a vertex that lies outside the facet containing
f , but does not encroach upons.

Suppose that the subfacetg is encroached upon by the circumcenter of some skinny tetrahedron, andg’s
circumcenterp is considered for insertion. Ifp encroaches uponf , f is considered for splitting. However,
the circumcenter off encroaches upons, sos is split at its midpointv. But neitherp nor the apex off lie
in the diametral lemon ofs, or particularly close tov; in the worst case, the insertion radius ofv might bep
2 smaller than that of eitherp or the apex off .

Could we simply insertp, decline to splits, and leave the equatorial lens off encroached? Unfortunately,
f andp might together form a skinny tetrahedron, which must be removed, and splittings may be the best
way to accomplish the removal. There is no guarantee that the circumcenter of this tetrahedron is nearf or
s, and the usual analysis techniques do not seem to apply.

Diametral lemons have another fundamental problem. One purpose of any protective region, be it a
sphere, a lens, or a lemon, is to handle the case where a skinny tetrahedron cannot be eliminated by inserting
a vertex at its circumcenter, because a locked subsegment or subfacet prevents the tetrahedron from being
eliminated. It is this requirement that dictates the30� angle that defines the shape of an equatorial lens.

Consider Figure 4.30. At left, there appears a tetrahedront whose vertices lie on the illustrated sphere,
which is the circumsphere oft. Though none of the vertices oft lies in or on the diametral lemon of the
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Figure 4.30:A diametral lemon fails to ensure that a locked subsegment will not stand between a tetrahe-
dron and its circumcenter, whereas a diametral sphere succeeds.

subsegments, several edges oft pass through the lemon, above the segments. The circumcenterc of t lies
outside the lemon as well, below the segments. If a vertex is inserted atc, t will not be eliminated because
s is locked and stands betweent and its circumcenter.

At right, the lemon has been replaced with a diametral sphere. An equator has been drawn on the
diametral sphere, oriented so that it will appear circular when viewed from the circumcenterc depicted. If
the diametral sphere ofs is empty, the vertices that lie on any empty circumsphere centered atc cannot lie
above this equator. Hence, any Delaunay tetrahedron whose circumcenter isc lies below the subsegment,
and the subsegment will not prevent the tetrahedron from being eliminated if a vertex is inserted atc. The
diametral sphere appears to be the smallest protecting shape that can make this guarantee.

4.4 Improvements

The improvements to two-dimensional Delaunay refinement described in Section 3.5 apply in three dimen-
sions as well. They are briefly revisited here.

4.4.1 Improving the Quality Bound in the Interior of the Mesh

Any of the following three strategies may be used to improve the quality of most of the tetrahedra of the
mesh without jeopardizing the termination guarantee.

� Use a quality bound ofB = 1 for tetrahedra that are not in contact with facet or segment interiors,
a quality bound ofB =

p
2 (for equatorial spheres) orB = 2p

3
(for equatorial lenses) for any

tetrahedron that is not in contact with a segment interior but has a vertex that lies in the interior of
a facet, and a quality bound ofB = 2 (for equatorial spheres) orB = 2

p
2p
3

(for equatorial lenses)
for any tetrahedron having a vertex that lies in the interior of a segment. The flow diagram for this
strategy (with equatorial lenses) appears as Figure 4.31.
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Figure 4.31:Dataflow diagram for three-dimensional Delaunay refinement with equatorial lenses and im-
proved quality away from the boundaries.

� Attempt to insert the circumcenter of any tetrahedron whose circumradius-to-shortest edge ratio is
larger than one. If any subsegments would be encroached, the circumcenter is rejected as usual, but the
encroached subsegments are split only if the triangle’s circumradius-to-shortest edge ratio is greater
than

p
2. If any subfacets would be encroached, they are split only if the triangle’s circumradius-to-

shortest edge ratio is greater than2 (for equatorial spheres) or2
p
2p
3

(for equatorial lenses).

� Attempt to insert the circumcenter of any tetrahedron whose circumradius-to-shortest edge ratio is
larger than one. If any subsegments or subfacets would be encroached, the circumcenter is rejected
as usual. Each encroached subsegment is checked to determine the insertion radius of the new vertex
that might be inserted at its midpoint. Each encroached subfacet is checked to determine whether
its circumcenter would encroach upon any subsegments, and if so, what the insertion radius of the
new vertices at their midpoints would be. If a subfacet’s circumcenter does not encroach upon any
subsegments, the insertion radius of the subfacet’s circumcenter is determined. The only midpoints
and circumcenters inserted are those whose insertion radii are at least as large as the length of the
shortest edge of the skinny tetrahedron.

As in the two-dimensional case, the second and third strategies tend to result in a denser spacing of
vertices in the interior of the mesh than the first strategy. Also as in the two-dimensional case, good grading
is maintained if the quality boundBI in the interior of the mesh is greater than one. Then Equation 4.1 is
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accompanied by the equation

DT � BI

BI � 1
;

which is familiar from Section 3.5.1.

Unlike in the two-dimensional case, this improvement is not rendered unnecessary by range-restricted
segment splitting (discussed below). The two improvements combined offer even better bounds in the
interior of the mesh. It is possible to apply a quality bound ofB = 1 to tetrahedra that are not in contact
with facet or segment interiors, and a quality bound ofB =

p
2 (for equatorial spheres) orB = 2p

3
(for

equatorial lenses) to all tetrahedra.

4.4.2 Range-Restricted Segment Splitting

As in two dimensions, the quality bound of tetrahedra may be improved by range-restricted segment split-
ting, at the cost of sacrificing good grading in theory, if not in practice. Termination is proven below for a
bound ofB =

p
2 (if equatorial spheres are used) orB = 2p

3
(if equatorial lenses are used). Furthermore,

the constraint on the angle separating a segment from a facet may be relaxed from69:3� to 60�.

In three dimensions, the illegal range must have a geometric width of
p
2 whether one uses equatorial

spheres or equatorial lenses, because diametral spheres are always used. Hence, subsegments are restricted
to the legal rangec2x, wherec 2 (1;

p
2] andx is an integer. Segments of illegal length are split unevenly

as described in Section 3.5.2.

To prove that the procedure terminates, I require a slightly different definition ofinsertion radius floor
than I used for the two-dimensional proof. Ifv is an input vertex or lies on a subsegment or subfacet, then its
insertion radius floorr0v is still defined to be the largest power of two strictly less than its insertion radiusrv.
However, ifv is a free vertex inserted or rejected for insertion at the circumcenter of a skinny tetrahedron,
thenr0v is defined to be the largest power of two strictly less thanrvp

2
(for equatorial spheres) or

p
3
2 rv (for

equatorial lenses). This change in the definition accounts for the case where a tetrahedron circumcenter
encroaches upon a subfacet, and unavoidably engenders a child with smaller insertion radius.

Lemma 33 Let lfsmin be the shortest distance between two nonincident entities (vertices, segments, or facet
regions) of the input PLC. Suppose that any two incident segments are separated by an angle of at least60�,
any two incident facet regions satisfy the projection condition, and any segment incident to a facet at one
vertex is separated from it by an angle of at least60� or satisfies the projection condition.

Suppose that a triangle is considered to be skinny if its circumradius-to-shortest edge ratio is larger
thanB � p

2 if equatorial spheres are used, orB � 2p
3

if equatorial lenses are used. Letv be a vertex of

the mesh, and letp = p(v) be its parent, if one exists. Then eitherr0v � lfsmin=6, or r0v � r0p.

Proof: If v is an input vertex, or ifv lies on a segment or facet and its parentp is an input vertex or lies on a
nonincident segment or facet region, then lfsmin � lfs(v) � rv � 2r0v, and the theorem holds.

If v is inserted at the circumcenter of a skinny tetrahedron, then by Lemma 15,rv � Brp > Br0p. Recall

that r0v is the largest power of two strictly less thanrvp
2

(for equatorial spheres) or
p
3
2 rv (for equatorial

lenses). BecauseB is chosen to cancel out the coefficient that biasesr0v, it follows thatr0v � r0p.

If v is inserted at the circumcenter of an encroached subfacetf , the case wherep is an input vertex or
lies on a nonincident feature has been considered above, andp cannot lie on an incident facet, so there are
two cases left.
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� If p lies on an incident segment separated from the facet containingf by an angle�, where60� �
� < 90�, then by Lemma 27,rv � rp

2 cos� � rp. Therefore,r0v � r0p.

� If p is the circumcenter of a skinny tetrahedron, rejected for insertion because it encroaches uponf ,
then by Lemma 27,rv � rpp

2
if equatorial spheres are used, or by Lemma 31,rv �

p
3
2 rp if equatorial

lenses are used. It follows thatr0v � r0p, because the coefficient that biases the insertion radius floor
of p is so chosen.

If v is inserted at the midpoint of an encroached subsegment, then the analysis presented in Lemma 23
for the two-dimensional case applies without change. �

Theorem 34 Suppose that the conditions on the quality bound and the angles between input entities spec-
ified in Lemma 33 hold. The Delaunay refinement algorithms described in this chapter, augmented with
range-restricted segment splitting, will terminate with no tetrahedralization edge shorter thanlfsmin=6.

Proof: By Lemma 33, the insertion radius floorr0v of every vertexv is either greater than or equal to lfsmin=6,
or greater than or equal to the insertion radius floor of some preexisting vertex. Because a vertex’s insertion
radius floor is a lower bound on its insertion radius, no edge smaller than lfsmin=6 is ever introduced into
the mesh, and the algorithm must terminate. �

The bound can be improved to lfsmin=4 in the same manner described following Theorem 24. I rec-
ommend both of the practical modifications to range-restricted segment splitting described in Section 3.5.2:
use the closed legal range[1;

p
2], and use a splitting procedure that occasionally takes two splits to get rid

of an illegal subsegment.

4.5 Comparison with the Delaunay Meshing Algorithm of Miller, Talmor,
Teng, Walkington, and Wang

The general-dimensional mesh generation algorithm of Miller, Talmor, Teng, Walkington, and Wang [67]
bears many similarities to the present research, and as I shall demonstrate, achieves theoretical bounds
similar to those proven in Section 4.2.3 for Delaunay refinement with equatorial spheres. The Miller et al.
algorithm differs from ordinary Delaunay refinement in that it begins by deciding what vertex spacing is
needed to meet a desired bound on circumradius-to-shortest edge ratio, and then generates a set of vertices
to match.

The algorithm relies upon a spacing functionf(v) defined over the domain to be meshed. Imagine that
each vertexv of the mesh is the center of a ball of radiusf(v). No two balls are allowed to overlap. This
rule implies that any edgevw has length at leastf(v) + f(w). Hence, the spacing function sets a lower
bound on the distance between vertices throughout the mesh.

To achieve good bounds on the circumradius-to-shortest edge ratios of the tetrahedra of the mesh, Miller
et al. form amaximal sphere-packing, which is a set of vertices having the property that no additional
vertex may be added without creating overlapping balls. Maximality ensures that tetrahedra with large
circumradii cannot exist; recall that Chew’s first Delaunay refinement algorithm uses maximality (with a
constant spacing function) to eliminate triangles having angles smaller than30�. The sphere-packing is also
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subject to the restriction that vertices may not lie inside theprotective sphereof a subsegment or subfacet,
much like the diametral and equatorial spheres of Delaunay refinement. True maximality is troublesome
to achieve, and Miller et al. suggest relaxed forms of maximality that do not compromise the tetrahedron
quality bounds; for instance,circumcenter-maximality, in which no vertex may be inserted at a tetrahedron
circumcenter without creating overlapping balls, is sufficient.

The advantage of generating a mesh from a spacing function is that the complete vertex set can be
generated prior to and independently from the tetrahedralization, much like the earliest Delaunay meshing
algorithms in the engineering literature. As a result, it is relatively easy to parallelize the Miller et al.
algorithm, whereas Delaunay refinement algorithms are difficult to parallelize because of synchronization
concerns when multiple processors are simultaneously changing the topology of the mesh. Miller et al.
create a maximal sphere-packing on each segment, then on each facet, and finally in the interior of the mesh.
Each segment may be packed independently, and once the segments are finished, so may each facet. Finally,
three-dimensional regions are packed. Even within a single region or facet, maximal sphere-packing is easier
to parallelize than Delaunay refinement. After sphere packing is complete, the vertices are tetrahedralized,
perhaps with a standard parallel convex hull algorithm.

The key innovation of the algorithm over earlier algorithms that generate a complete vertex set before
triangulation is the use of the local feature size to determine vertex spacing. Provable bounds on tetrahedron
quality may be obtained by choosing the spacing functionf(v) = �lfs(v) for a sufficiently small value
of �. The function lfs(�) may be computed with the help of octrees. Miller et al. show that, for this
spacing function, the three-dimensional version of their algorithm achieves circumradius-to-shortest edge
ratios bounded below

B =
2

1� (7 + 2
p
2)�

:

To compare this bound with the results of Section 4.2.3, I must revise Theorem 19 so that the minimum
length of an edge is expressed in terms of both of the edge’s endpoints.

Theorem 35 For the Delaunay refinement algorithms discussed in this chapter, any edgevw of the final

mesh has length at leastlfs(v)+lfs(w)
2DS+1 .

Proof: Lemma 29 and Theorem 32 show (each for a different value ofDS) that lfs(v)
rv

� DS for any vertex
v. Assume without loss of generality thatw was added afterv, and thus the distance between the two vertices

is at leastrw � lfs(w)
DS

. It follows that

jvwj � rw � lfs(w) + lfs(w)

2DS
:

By Lemma 14, lfs(w) + jvwj � lfs(v), so

jvwj � lfs(w) + lfs(v)� jvwj
2DS

:

It follows that jvwj � lfs(v)+lfs(w)
2DS+1 . �

Based on the value ofDS calculated in Lemma 29, Delaunay refinement with equatorial spheres ensures
that edge lengths are bounded by the inequality

jvwj � B � 2

(7 + 2
p
2)B � 2

[lfs(v) + lfs(w)]:
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In a mesh produced by the algorithm of Miller et al., no edgevw is shorter thanf(v) + f(w). If f(p) =
�lfs(p), edge lengths are bounded by the inequality

jvwj � B � 2

(7 + 2
p
2)B

[lfs(v) + lfs(w)]:

It is not surprising that these bounds are quite similar, as the algorithms are based upon similar ideas,
and are ultimately subject to the same imperatives of mathematical law. I do not know to what difference
between the algorithms one should attribute the slightly better bound for Delaunay refinement, nor whether
it marks a real difference between the algorithms or is an artifact of the different methods of analysis.
However, there is no doubt about the source of the additional improvement one obtains by using equatorial
lenses instead of equatorial spheres. Taking the value forDS from Theorem 32, Delaunay refinement with
equatorial lenses produces a tetrahedralization whose edge lengths are bounded by the inequality

jvwj �
p
3B � 2

p
2

(3
p
3 + 2

p
6 + 4

p
2)B � 2

p
2
[lfs(v) + lfs(w)]:

Edge lengths in the Miller et al. algorithm and in Delaunay refinement with equatorial spheres decrease
to zero as the quality bound approaches two, whereas as I have already discussed, Delaunay refinement
with equatorial lenses produces well-graded meshes for quality bounds as low as1:63. If range-restricted
segment splitting is used, the quality bound may be further reduced to1:15, although I can no longer prove
that the final mesh is not uniform.

The real difference between the algorithms, however, is one not exposed by mathematics. Delaunay
refinement islazy, in the sense that it inserts a vertex only if a skinny simplex is present. The Miller et al.
algorithm is not lazy at all; it is blind to the mesh that would be formed by the vertices it creates. However, by
creating a maximal sphere-packing it inserts enough vertices to ensure that skinny simplices simply cannot
survive.

How much does maximality cost? Figure 4.32, reprinted from Ruppert’s original paper, gives us some
idea. The figure charts the progress of the smallest angle in a triangular mesh during a typical run of
Ruppert’s algorithm. (During this run, no specific angle bound was applied; rather, the algorithm repeatedly
splits the worst triangle in the mesh, even if it is nicely shaped.) The analysis presented in Section 3.3.4
implies that eventually, the curve should never drop below20:7�. It is not clear how long the algorithm
would have to run before reaching this hallowed state, but it is clear that the algorithm arrives at a mesh
satisfying a20�, or even30�, angle bound long before. A maximal sphere-packing algorithm guaranteed to
obtain a20� angle bound produces a mesh at the high end of the curve, where the curve cannot dip below
20� again. Hence, it generates many more elements than a lazy algorithm.

For a more direct example, return to Figure 4.21 in Section 4.2.3. In theory, to obtain a quality bound
of B = 2:5, one might have to tolerate edge lengths more than twenty times smaller than the local feature
size; in practice, the number appears to be closer to two. Laziness appear to buy you a thousand-fold smaller
mesh.

Is it possible to simultaneously obtain the benefits of Delaunay refinement and the parallelizability of
Miller et al.?

The benefits of equatorial lenses can perhaps be realized in the Miller et al. algorithm. It seems straight-
forward to form a sphere-packing in which subfacets are protected with lenses, rather than spheres. The
sticking point is tetrahedralizing the vertices of the sphere/lens packing. Lenses do not guarantee a Delau-
nay mesh, and the improved bounds that accompany them are a direct benefit of relaxing the requirement
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Figure 4.32:Progress of the minimum angle of a triangulation during a run of Ruppert’s algorithm. (Courtesy
Jim Ruppert.)

that meshes be Delaunay. As Section 2.1.3 demonstrates, a general algorithm for constructing constrained
Delaunay tetrahedralizations is not going to appear. Does a maximal sphere/lens packing have special
properties that guarantee that a constrained Delaunay tetrahedralization can be formed? If so, is there an
algorithm for generating such tetrahedralizations? I will not pursue the question here.

It also seems straightforward to use restricted subsegment lengths when generating a sphere-packing
of a segment, but the only obvious way to reap the improved bounds proven in Section 4.4.2 is to put all
the subsegments of the mesh into the same range, so that the shortest and longest subsegments of the mesh
differ in length by a factor no greater than

p
2. While Delaunay refinement with range-restricted segment

splitting might obtain the same unfortunate result in the worst case, it rarely happens in practice because of
the algorithm’s laziness.

And what of laziness? For a mesh generation algorithm to insert vertices lazily, it must be able to exam-
ine the quality of the simplices of the current mesh. Unfortunately, this implies maintaining a triangulation,
which would seem to rule out the easy parallelization that Miller et al. offer. One hopes for, but does not
expect to see, an elegant resolution to this dilemma. A suggestion is to use the Miller et al. algorithm to
generate an initial mesh with coarser vertex spacing than the theory suggests, then refine it to remove the
few poor quality elements that appear. Even if the latter step is sequential, it may be short enough that most
of the speed benefits of parallelization are realized.

4.6 Sliver Removal by Delaunay Refinement

Although I have proven no theoretical guarantees about Delaunay refinement’s ability to remove sliver tetra-
hedra, it is nonetheless natural to wonder whether Delaunay refinement might be effective in practice. If one
inserts a vertex at the circumcenter of each sliver tetrahedron, will the algorithm fail to terminate?

As Figure 4.33 demonstrates, Delaunay refinement can succeed for useful dihedral angle bounds. Each
of the meshes illustrated was generated by applying a circumradius-to-shortest edge ratio boundB, and a
dihedral angle bound�min. Not surprisingly, as the boundB was strengthened, the bound�min had to be
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B = 1:4, �min = 23:2�, �max = 146:2�,
hmin = 0:47, 505 vertices, 1331 tetrahedra.

B = 1:2, �min = 19�, �max = 151:7�,
hmin = 0:186, 1937 vertices, 7303 tetrahedra.

B = 1:1, �min = 14�, �max = 158:9�,
hmin = 0:125, 4539 vertices, 19048 tetrahedra.

B = 1:06, �min = 11�, �max = 163:6�,
hmin = 0:119, 6514 vertices, 28543 tetrahedra.

Figure 4.33: Meshes created by Delaunay refinement using equatorial spheres and bounds on both
circumradius-to-shortest edge ratio B and smallest dihedral angle �min. Also listed for each mesh is its
largest dihedral angle �max and its shortest edge length hmin. The best lower bound on dihedral angles
obtained for this PLC is 23:2�. Compare with Figure 4.21 on Page 105.

weakened, or the algorithm did not terminate. For each mesh illustrated, raising the bound�min by one
degree causes the algorithm to fail to halt. It is not necessary to use a circumradius-to-shortest edge ratio
bound at all. However, even if dihedral angles are the sole criterion for judging tetrahedron quaity, I have
good reason to believe that smaller meshes are achieved if poor tetrahedra are ordered so that those with the
largest circumradius-to-shortest edge ratios are split earliest. See Section 5.3.3 for further discussion.

Chew [22] offers hints as to why good results are obtained. A sliver can always be eliminated by splitting
it, but how can one avoid creating new slivers in the process? Chew observes that a newly inserted vertex can
only take part in a sliver if it is positioned badly relative to a triangular face already in the mesh. Figure 4.34
illustrates the set of bad positions. At left, a side view of the plane containing a face of the tetrahedralization
is drawn. A tetrahedron formed by the face and a new vertex can have a small dihedral angle only if the new
vertex lies within the slab depicted; this slab is the set of all points within a certain distance from the plane.
Late in the Delaunay refinement process, such a tetrahedron can only arise if its circumradius-to-shortest
edge ratio is small, which implies that it must lie in the region colored black in Figure 4.34 (left). This
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Figure 4.34:Left: A side view of the plane containing a triangular face. In conjunction with this face, a newly
inserted vertex can form a sliver with both a small dihedral angle and a small circumradius-to-shortest edge
ratio only if it is inserted in the disallowed region (black). Right: An oblique view of the disallowed region of
a triangular face.

disallowed region, depicted at right, is shaped like a ring with an hourglass cross-section.

Chew shows that if the slab associated with each face is sufficiently thin, a randomized Delaunay re-
finement algorithm can avoid ever placing a vertex in the disallowed region of any face. The key idea is
that each new vertex is not inserted precisely at a circumcenter; rather, a candidate vertex is generated at a
randomly chosen location in the inner half of the circumsphere’s radius. If the candidate vertex lies in some
face’s disallowed region, the candidate is rejected and a new one generated in its stead.

The algorithm will eventually generate a successful candidate, because the number of nearby triangular
faces is bounded, and the volume of each disallowed region is small. If the sum of the volumes of the
disallowed regions is less than the volume of the region in which candidate vertices are generated, a good
candidate will eventually be found. To ensure that this condition is met, the slabs are made very thin.

Chew derives an explicit bound on the worst-case tetrahedron aspect ratio, which is too small to serve
as a practical guarantee. However, there is undoubtedly a great deal of slack in the derivation. Even if the
slabs are made thick enough to offer a useful bound on the minimum dihedral angle, the small volume of the
disallowed region suggests that the practical prospects are good. My non-randomized Delaunay refinement
algorithm seems to verify this intuition. I have not yet tested whether randomization is helpful in practice.
Although randomization may reduce the frequency with which slivers are generated, the act of inserting
vertices off-center in circumspheres weakens the bound on circumradius-to-shortest edge ratio.

Unfortunately, my practical success in removing slivers is probably due in part to the severe restrictions
on input angle I have imposed upon Delaunay refinement. Practitioners report that they have the most diffi-
culty removing slivers at the boundary of a mesh, especially near small angles. Figure 2.35 on Page 38 offers
a demonstration of this observation. Mesh improvement techniques such as optimization-based smoothing
and topological transformations, discussed in Section 2.2.4, can likely remove some of the imperfections
that cannot be removed directly by Delaunay refinement.
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4.7 Generalization to Higher Dimensions

I do not intend to carry out a full analysis of higher-dimensional Delaunay refinement algorithms here.
However, I suspect that there are no further barriers to fully generalizing the method.

The most important result to generalize is the Projection Lemma (Lemma 26), which I have every reason
to believe holds true for higher dimensional facets. The Projection Lemma is critical because it specifies a
condition under which incident constrained polytopes can be guaranteed not to encroach upon each other.
Specifically, if the lower-dimensional boundary polytopes of a constrained facet are not encroached, then
the subfacets of that facet can only be encroached upon by vertices in the facet’s orthogonal projection.

Additionally, the Projection Lemma makes it possible to choose an encroached simplex to split so that
the insertion radius of the newly inserted vertex is no worse than

p
2 times smaller than that of its parent,

regardless of the dimensionality of the simplices under consideration for splitting. Hence, ind dimensions

one expects to achieve a quality boundB >
p
2
d�1

with good grading by using the straightforward gen-

eralization of Ruppert’s algorithm, andB =
p
2
d�2

(without a guarantee of good grading) with the use of
range-restricted segment splitting. I am also optimistic that lenses, rather than spheres, can be used to protect
subfacets of dimensiond� 1, although spheres must be used to protect lower-dimensional subfacets. If so,

one may achieve a quality boundB >
p
2
d

p
3

with a guarantee of good grading, and (ford � 3) B =
p
2
d�1

p
3

without.

If one believes that the Projection Lemma generalizes to higher dimensions, then Lemma 27, Theo-
rem 28, Lemma 29, and Theorem 30 seem to generalize in straightforward ways. The most complicated
pieces of Lemma 27 are those dealing with acute angles between simplices. Without some additional al-
gorithmic insight, acute angles probably cannot be tolerated between simplices of dimension higher than
one. An acute angle between a segment (1-simplex) and another simplex of dimensionk may be permitted
for anyk, but the angle must be larger thanarccos 1p

2
k+1 . If range-restricted segment splitting is used, this

angle may be relaxed toarccos 1p
2
k for k � 2.

Of course, this discussion begs the question of whether anyone would want such an algorithm. A four-
dimensional mesh generator might find use in space-time finite element methods, where time is represented
as a fourth spatial dimension. This might be an ideal application for Delaunay refinement methods, be-
cause for some problems, no additional small angles will ensue from consideration of the time dimension.
Commonly, the region to be meshed is nothing more complicated than an unchanging three-dimensional
object extruded orthogonally in the time dimension. In this case, the reason to create a four-dimensional
mesh is so that one may adjust the density of nodes through time in order to track time-dependent multiscale
phenomena, such as turbulent fluid flow.

4.8 Conclusions

Delaunay refinement is an effective technique for three-dimensional mesh generation. Its theoretical guaran-
tees on element quality and mesh grading make it attractive. Taken at face value, however, these guarantees
are not wholly satisfying. There is no guarantee that slivers can be eliminated. Although the constantDS

derived in Section 4.3.2 gives us confidence that edge sizes cannot become smaller than one twelfth the
local feature size when applying a quality bound ofB = 2:5, this bound may seem insufficiently strong for
practical purposes, especially when one recalls that the number of elements is inversely proportional to the
cube of the edge length.
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Fortunately, Delaunay refinement falls into the class of algorithms that usually outperform their worst-
case bounds. The proof techniques used to analyze Delaunay refinement fail to take into account a great deal
of “slack” in the mesh; the relationship between the insertion radii of a parent and its child is usually looser
than in the worst case. This slack accumulates as one traces a sequence of descendants from an input vertex.
One can apply a tighter bound on circumradius-to-shortest edge ratio than the theory suggests is possible,
or even apply bounds on dihedral angles, and still produce a small, nicely graded mesh.

Despite this pleasant gap between theory and practice, the theory is helpful for suggesting innovations
that are likely to bear fruit in practice, such as equatorial lenses.

The main outstanding problem in three-dimensional Delaunay refinement is the question of how to
handle small input angles. Is there a method as effective as the Quitter, presented in Section 3.7? Modified
segment splitting using concentric spherical shells is probably as good an idea in three dimensions as in
two, but it only begins to address the possible problems. What about facets separated by small angles? How
can their vertices be kept from encroaching upon each other’s subfacets? One suggestion is to modify the
method of subfacet splitting. If two subfacets meet at a subsegment, separated by a small angle, and one of
the subfacets is encroached, perhaps it should be split in such a way that an equilateral triangle is formed
at the subsegment. In this manner, subfacets separated by small angles are prevented from engaging in a
diminishing spiral of mutual encroachment, just as subsegments are prevented from doing so by modified
segment splitting. This idea holds promise, but falls short of a complete solution to the problem of small
angles.

In two dimensions, there is a sure-fire solution: never insert a vertex whose insertion radius is smaller
than the insertion radius of its most recently inserted ancestor. An impediment to using this strategy in
three dimensions, besides the awful elements it produces, is that boundary recovery may fail if a missing
subsegment or subfacet is not split because of this rule. This problem is surmounted in two dimensions by
the constrained Delaunay triangulation, but this option is not available in three. Section 5.3.1 suggests a way
to garner some of the advantages of constrained triangulation, but offers no guarantees.

Nevertheless, if segments and facets are inserted in sequence, and the subsegments and subfacets of each
are locked as soon as they are recovered, then they will all be recovered eventually. As I mentioned at the
end of Section 4.3.2, the length of the shortest edge in the final mesh may be exponentially small, where
the exponent is proportional to the number of facets. After the boundaries have been completely recovered,
the sure-fire solution can be applied. Hence, it is always possible to ensure that three-dimensional Delaunay
refinement terminates, although the elements might be poor in quality and much smaller than desired.



Chapter 5

Implementation

Triangle is a C program for two-dimensional mesh generation and construction of Delaunay triangulations,
constrained Delaunay triangulations, and Voronoi diagrams.Pyramidis a C program for three-dimensional
mesh generation and Delaunay tetrahedralization. These programs are implementations of the Delaunay
refinement algorithms discussed in the previous chapters. Triangle and Pyramid are fast, memory-efficient,
and robust. Triangle computes Delaunay triangulations and constrained Delaunay triangulations exactly;
Pyramid computes Delaunay tetrahedralizations exactly.

Features of both programs include user-specified constraints on element quality and size, user-specified
holes and concavities, the ability to refine preexisting triangulations, and the economical use of exact arith-
metic to improve robustness. This chapter discusses many of the key implementation decisions, including
the choice of triangulation algorithms and data structures, the steps taken to create and refine a mesh, and
other issues. The use of exact arithmetic to ensure the correctness of Delaunay triangulations and tetrahe-
dralizations, and to improve the robustness of both mesh generators, is discussed at length in Chapter 6.

Many of the implementation decisions in a complex program like a mesh generator depend upon how
one wishes to trade off speed and memory use. Triangle and Pyramid are designed to support large scientific
computing projects, in which the sizes of the meshes that can be produced are limited by the available
memory, and not by the amount of time the program can run. Therefore, many of the decisions described in
this chapter are motivated by the desire to make space efficiency a priority, without unduly sacrificing speed.

125
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Delaunay triangulation timings (seconds)
Number of points 10,000 100,000 1,000,000

Point distribution Uniform Boundary Tilted Uniform Boundary Tilted Uniform Boundary Tilted
Algorithm Random of Circle Grid Random of Circle Grid Random of Circle Grid
Div&Conq, alternating cuts

robust 0.33 0.57 0.72 4.5 5.3 5.5 58 61 58
non-robust 0.30 0.27 0.27 4.0 4.0 3.5 53 56 44

Div&Conq, vertical cuts
robust 0.47 1.06 0.96 6.2 9.0 7.6 79 98 85
non-robust 0.36 0.17 failed 5.0 2.1 4.2 64 26 failed

Sweepline
non-robust 0.78 0.62 0.71 10.8 8.6 10.5 147 119 139

Incremental
robust 1.15 3.88 2.79 24.0 112.7 101.3 545 1523 2138
non-robust 0.99 2.74 failed 21.3 94.3 failed 486 1327 failed

Table 5.1:Timings for triangulation on a DEC 3000/700 with a 225 MHz Alpha processor, not including I/O.
Robust and non-robust versions of the Delaunay algorithms were used to triangulate points chosen from
one of three different distributions: uniformly distributed random points in a square, random approximately
cocircular points, and a tilted square grid.

5.1 Triangulation Algorithms

5.1.1 Comparison of Three Delaunay Triangulation Algorithms

A mesh generator rests on the efficiency of its triangulation algorithms and data structures, so I discuss these
first.

There are many Delaunay triangulation algorithms, some of which are surveyed and evaluated by For-
tune [33] and Su and Drysdale [91, 90]. Their results indicate a rough parity in speed, to within a factor of
two, among the incremental insertion algorithm of Lawson [59], the divide-and-conquer algorithm of Lee
and Schachter [60], and the plane-sweep algorithm of Fortune [31]; however, the implementations they study
were written by different people. I believe that Triangle is the first instance in which all three algorithms have
been implemented with the same data structures and floating-point tests, by one person who gave roughly
equal attention to optimizing each. (Some details of how these implementations were optimized appear in
Section 5.1.2.)

Table 5.1 compares the algorithms, including versions that use exact arithmetic (see Chapter 6) to
achieve robustness, and versions that use approximate arithmetic and are hence faster but may fail or produce
incorrect output. (The robust and non-robust versions are otherwise identical.) As Su and Drysdale [91] also
found, the divide-and-conquer algorithm is fastest, with the sweepline algorithm second. The incremental
algorithm performs poorly, spending most of its time in point location. (Su and Drysdale produced a better
incremental insertion implementation by using bucketing to perform point location, but it still ranks third.
Triangle does not use bucketing because it is easily defeated, as discussed in Section 5.1.2.) The agreement
between my results and those of Su and Drysdale lends support to their ranking of algorithms.

An important optimization to the divide-and-conquer algorithm, adapted from Dwyer [30], is to partition
the vertices with alternating horizontal and vertical cuts (Lee and Schachter’s algorithm uses only vertical
cuts). Alternating cuts speed the algorithm and, when exact arithmetic is disabled, reduce its likelihood of
failure. One million points can be triangulated correctly in a minute on a fast workstation.

All three triangulation algorithms are implemented so as to eliminate duplicate input points; if not elimi-
nated, duplicates can cause catastrophic failures. The sweepline algorithm can easily detect duplicate points
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as they are removed from the event queue (by comparing each with the previous point removed from the
queue), and the incremental insertion algorithm can detect a duplicate point after point location. My im-
plementation of the divide-and-conquer algorithm begins by sorting the points by theirx-coordinates, after
which duplicates can be detected and removed. This sorting step is a necessary part of the divide-and-
conquer algorithm with vertical cuts, but not of the variant with alternating cuts (which must perform a
sequence of median-finding operations, alternately byx andy-coordinates). Hence, the timings in Table 5.1
for divide-and-conquer triangulation with alternating cuts could be improved slightly if one could guarantee
that no duplicate input points would occur; the initial sorting step would be unnecessary.

5.1.2 Technical Implementation Notes

This section presents technical details of my Delaunay triangulation implementations that are important for
anyone who wishes to evaluate the usefulness of my evaluations, or to modify the code.

The sweepline and incremental Delaunay triangulation implementations compared by Su and Drys-
dale [91] each use some variant of uniform bucketing to locate points. Bucketing yields fast implementations
on uniform point sets, but is easily defeated; a small, dense cluster of points in a large, sparsely populated
region may all fall into a single bucket. I have not used bucketing in Triangle, preferring algorithms that
exhibit good performance with any distribution of input points. As a result, Triangle may be slower than
necessary when triangulating uniformly distributed point sets, but will not exhibit asymptotically slower
running times on difficult inputs.

Fortune’s sweepline algorithm uses two nontrivial data structures in addition to the triangulation: a
priority queue to store events, and a balanced tree data structure to store the sequence of edges on the
boundary of the mesh. Fortune’s own implementation, available from Netlib, uses bucketing to perform
both these functions; hence, anO(n log n) running time is not guaranteed, and Su and Drysdale [91] found
that the original implementation exhibitsO(n3=2) performance on uniform random point sets. By modifying
Fortune’s code to use a heap to store events, they obtainedO(n log n) running time on uniformly distributed
point sets, and better performance for point sets having more than about 50,000 points. However, they found
that bucketing outperforms a heap on smaller point sets.

Triangle’s implementation uses a heap as well, and also uses a splay tree [88] to store mesh boundary
edges, so that anO(n log n) running time is attained, regardless of the distribution of points. Not all bound-
ary edges are stored in the splay tree; when a new edge is created, it is inserted into the tree with probability
0:1. (The value0:1 was chosen empirically to minimize the triangulation time for uniform random point
sets.) At any time, the splay tree contains a random sample of roughly one tenth of the boundary edges.
When the sweepline sweeps past an input point, the point must be located relative to the boundary edges;
this point location involves a search in the splay tree, followed by a search on the boundary of the trian-
gulation itself. By keeping the splay tree small, this scheme improves the speed and memory use of point
location without changing the asymptotic performance. This is an example of how randomization can be
used to reduce the constants, rather than the asymptotic behavior, associated with a geometric algorithm.

A splay tree adjusts itself so that frequently accessed items are near the top of the tree. Hence, a point
set organized so that many new vertices appear at roughly the same location on the boundary of the mesh
is likely to be triangulated quickly. This effect partly explains why Triangle’s sweepline implementation
triangulates points on the boundary of a circle more quickly than the other point sets, even though there are
many more boundary edges in the cocircular point set and the splay tree grows to be much larger (containing
O(n) boundary edges instead ofO(

p
n)). For this reason, I believe that splay trees are better suited to

sweepline Delaunay triangulation than other balanced tree algorithms, such as red-black trees.
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Triangle’s incremental insertion algorithm for Delaunay triangulation uses the point location method
proposed by M¨ucke, Saias, and Zhu [72]. Theirjump-and-walkmethod chooses a random sample of
O(n1=3) vertices from the mesh (wheren is the number of nodescurrently in the mesh), determines which
of these vertices is closest to the query point, and walks through the mesh from the chosen vertex toward the
query point until the triangle containing that point is found. M¨ucke et al. show that the resulting incremental
algorithm takes expectedO(n4=3) time on uniform random point sets. Table 5.1 appears to confirm this
analysis. Triangle uses a sample size of0:45n1=3; the coefficient was chosen empirically to minimize the
triangulation time for uniform random point sets. Triangle also checks the previously inserted point, because
in many practical point sets, any two consecutive points have a high likelihood of being near each other.

I have not implemented theO(n log n) point location scheme suggested by Guibas, Knuth, and Sharir
[46], although it promises to outperform the method of M¨ucke et al. Even with asymptotically better point
location, the incremental insertion algorithm seems unlikely to surpass the performance of the divide-and-
conquer algorithm.

5.2 Data Structures

5.2.1 Data Structures for Triangulation in Two Dimensions

Should one choose a data structure that uses a record to represent each edge, or one that uses a record to rep-
resent each triangle? Triangle was originally written using Guibas and Stolfi’squad-edgedata structure [47]
(without theFlip operator), then rewritten using a triangle-based data structure. The quad-edge data struc-
ture is popular because it is elegant, because it simultaneously represents a graph and its geometric dual
(such as a Delaunay triangulation and the corresponding Voronoi diagram), and because Guibas and Stolfi
give detailed pseudocode for implementing the divide-and-conquer and incremental Delaunay algorithms
using quad-edges.

Despite the fundamental differences between the data structures, the quad-edge-based and triangle-based
implementations of Triangle are both faithful to the Delaunay triangulation algorithms presented by Guibas
and Stolfi [47] (I did not implement a quad-edge sweepline algorithm), and hence offer a fair comparison of
the data structures. Perhaps the most useful observation of this chapter for practitioners is that the divide-
and-conquer algorithm, the incremental algorithm, and Ruppert’s Delaunay refinement algorithm were all
sped by a factor of two by the triangular data structure. (However, it is worth noting that the code devoted
specifically to triangulation is roughly twice as long for the triangular data structure.) A difference so
pronounced demands explanation.

First, consider the different storage demands of each data structure, illustrated in Figure 5.1. Each quad-
edge record contains four pointers to neighboring quad-edges, and two pointers to vertices (the endpoints
of the edge). Each triangle record contains three pointers to neighboring triangles, and three pointers to
vertices. Hence, both structures contain six pointers. A triangulation contains roughly three edges for every
two triangles. Hence, the triangular data structure is more space-efficient.

It is difficult to ascertain why the triangular data structure is superior in time as well as space, but one
can make educated inferences. When a program makes structural changes to a triangulation, the amount of
time used depends in part on the number of pointers that have to be read and written. This amount is smaller
for the triangular data structure; more of the connectivity information is implicit in each triangle. Cacheing
is improved by the fact that fewer structures are accessed. (For large triangulations, any two adjoining
quad-edges or triangles are unlikely to lie in the same cache line.)
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Figure 5.1:A triangulation (top) and its corresponding representations with quad-edge (left) and triangular
(right) data structures. Each quad-edge and each triangle contains six pointers.

Both the quad-edge and triangle data structures must store not only pointers to their neighbors, but also
theorientationsof their neighbors, to make clear how they are connected. For instance, each pointer from
a triangle to a neighboring triangle has an associated orientation (a number between zero and two) that
indicates which edge of the neighboring triangle is contacted. An important space optimization is to store
the orientation of each quad-edge or triangle in the bottom two bits of the corresponding pointer. Thus, each
record must be aligned on a four-byte boundary. This space optimization is probably a speed optimization
as well, as memory traffic in modern machines is becoming more and more expensive compared to bit
operations.

Because the triangle-based divide-and-conquer algorithm proved to be fastest, it is worth exploring in
some depth. At first glance, the algorithm and data structure seem incompatible. The divide-and-conquer
algorithm recursively halves the input vertices until they are partitioned into subsets of two or three vertices
each. Each subset is easily triangulated (yielding an edge, two collinear edges, or a triangle), and the
triangulations are merged together to form larger ones. But how does one represent an edge or a sequence
of collinear edges with a triangular data structure? If one uses a degenerate triangle to represent an isolated
edge, the resulting code is clumsy because of the need to handle special cases. One might partition the input
into subsets of three to five vertices, but this does not help if the points in a subset are collinear.

To preserve the elegance of Guibas and Stolfi’s presentation of the divide-and-conquer algorithm, each
triangulation is surrounded with a layer of “ghost” triangles, one triangle per convex hull edge. The ghost
triangles are connected to each other in a ring about a “vertex at infinity” (really just a null pointer). A single
edge is represented by two ghost triangles, as illustrated in Figure 5.2.

Ghost triangles are useful for efficiently traversing the convex hull edges during the merge step. Some
are transformed into real triangles during this step; two triangulations are sewn together by fitting their
ghost triangles together like the teeth of two gears. (Some edge flips are also needed. See Figure 5.3.) Each
merge step creates only two new triangles; one at the bottom and one at the top of the seam. After all the
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Figure 5.2: How the triangle-based divide-and-conquer algorithm represents an isolated edge (left) and
an isolated triangle (right). Dashed lines represent ghost triangles. White vertices all represent the same
“vertex at infinity”; only black vertices have coordinates.

Figure 5.3: Halfway through a merge step of the divide-and-conquer algorithm. Dashed lines represent
ghost triangles and triangles displaced by edge flips. The dotted triangle at bottom center is a newly created
ghost triangle. Shaded triangles are not Delaunay and will be displaced by edge flips.

merge steps are done, the ghost triangles are removed and the triangulation is passed on to the next stage of
meshing.

Ghost triangles are especially useful for reducing the amount of special-case code. For example, consider
performing an edge flip between two triangles that lie at the boundary of the mesh. The two triangles must
be detached from their neighbors, rotated a quarter turn, and reattached. One of the tasks performed during
reattachment is adjusting the pointers of each of the four neighboring triangles. Without ghost triangles,
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some of the neighbors might be null pointers, and conditional code is required to check each. With ghost
triangles, the conditionals are not required. Although this may seem like a trivial concern, the number of
similar cases in which ghost triangles simplified the implementation of Triangle was large enough to make
it worthy of note.

Precisely the same data structure, ghost triangles and all, is used in the sweepline implementation to
represent the growing triangulation. Ghost triangles are handy for representing the dangling edges that
appear on the advancing front of the triangulation, and for navigating along the front during point location.
Details are omitted.

5.2.2 Data Structures for Mesh Generation in Two Dimensions

Augmentations to the quad-edge and triangle data structures are necessary to support the constrained trian-
gulations needed for mesh generation. As Section 3.3 mentioned, Delaunay refinement can be implemented
with or without locked edges. As a practical matter, though, subsegments need to be flagged so that en-
croached subsegments can be quickly detected. Hence, there is nothing to lose by locking subsegments, and
a speed improvement will result, because unnecessary edge flips are not performed.

Other augmentations are needed too. Additional information may be associated with each subsegment,
vertex, and element of the mesh. Commonly, subsegments and vertices must carry markers to identify
which segments they lie upon, so that the correct boundary conditions may be applied to them in a finite
element simulation or other numerical PDE solver. If a smoothing algorithm is implemented, it will need
to know which subsegments are connected together into a single segment, so that vertices may be moved
along the length of the segment. If curved segments are supported, information about the curvature of a
subsegment is needed whenever that subsegment is split. (At the time of this writing, Triangle supports
markers for boundary conditions and stores subsegment connectivity. Smoothing and curved surfaces are
not implemented.)

Each triangle of the mesh may need to carry associated attributes such as its maximum permissible
triangle area or physical constants needed for a finite element simulation. Vertices might also have physical
constants associated with them. It is also useful for a mesh generator to be able to tag each element to
identify the region of the mesh in which the element falls. Triangle, for instance, allows the user to specify
segment-bounded regions of the mesh whose elements should be tagged with specified numerical markers.

While each element of the mesh may have associated attributes, the only edges that generally have any
special information associated with them are subsegments. Hence, it is easier to augment the triangular data
structure to include subsegment attributes, using a separate data structure that represents a subsegment, than
to augment the quad-edge data structure to include element attributes.

I modify the triangular data structure to meet the requirements described above by augmenting each
triangle with three extra pointers (one for each edge), which are usually null but may point to a subsegment
data structure (Figure 5.4). In large meshes where the number of triangles is determined primarily by
area constraints and not by the input geometry, only a minority of edges are subsegments, so the memory
occupied by subsegments is small. However, the memory occupied by triangles is increased by one-half.
In the special case where information is associated with subsegments but not with elements, the additional
three pointers in each triangle eliminate the space advantage of the triangular data structure relative to quad-
edges, but not its speed advantage. Triangle uses the longer nine-pointer record only if subsegments are
present; six-pointer triangles are used for unconstrained Delaunay triangulation.

In large meshes, most of the pointers from triangles to subsegments are null, so each triangle record
can be reduced to seven pointers by using just a single subsegment pointer. In a triangle that contacts no
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Figure 5.4: Shaded boxes represent subsegments, which may be linked together into segments. Each
triangle has three additional pointers that reference adjoining subsegments.

subsegment, this pointer is null. In a triangle that contacts one or more subsegments, this pointer points to
a separate record containing three pointers to subsegments. The number of these special records is small,
so they increase the space requirements only modestly. I have not implemented this space optimization in
Triangle.

A more aggressive optimization would be to use the original six-pointer triangles, but each of a triangle’s
three pointers to neighbors can point to either a triangle or a subsegment. A one-bit tag (possibly hidden in
the lower bits of each pointer) would distinguish between the two. This space optimization would increase
the amount of conditional code executed; it is not clear how bad its effect on running time would be.

To save space and time, Triangle and Pyramid do not maintain pointers from mesh vertices to any other
structure. Variables in each program often denote a vertex not by pointing directly to the vertex, but rather
by pointing to an element that contains the vertex. Hence, mesh structures connected to the vertex may be
identified.

5.2.3 Data Structures for Three Dimensions

There are at least three choices of data structure to represent a tetrahedralization. One could use a record to
represent each tetrahedron, a record to represent each face, or a record to represent each pairing of a face and
an edge (hence, three records per triangular face). The last structure, proposed by Dobkin and Laszlo [29],
is the most general, and can be used to represent arbitrary spatial subdivisions. However, a tetrahedralizer
does not need this generality, and memory considerations easily rule out all but the first option.

Consider, for instance, the minimum memory requirements for a tetrahedron-based Delaunay tetrahe-
dralizer, and for a face-based tetrahedralizer. In the former case, illustrated in Figure 5.5(a), the record that
represents a tetrahedron must have eight pointers: four for its vertices, and four for the adjoining tetrahe-
dra. In the latter case, illustrated in Figure 5.5(b), the record that represents a triangular face must have six
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(a) (b) (c)

Figure 5.5:(a) Tetrahedron-based data structure. (b) Face-based data structure. (c) A doubly linked list of
faces about an edge.

pointers, and ideally has nine: three for its vertices, and three or six that point to adjacent triangular faces.
The choice of three or six depends on whether one wishes to have a singly-linked or doubly-linked list of
faces about each edge of the tetrahedralization; the latter is illustrated in Figure 5.5(c). A singly-linked list
of faces is slower to traverse, and more cumbersome to program.

There are roughly two faces stored for each tetrahedron, because each tetrahedron has four faces, and
each face (except on exterior boundaries) is shared by two tetrahedra. Hence, the cost of a face-based data
structure is twelve or eighteen pointers per tetrahedron, which markedly exceeds the memory requirements
of the tetrahedron-based data structure.

For mesh generation, as opposed to Delaunay tetrahedralization, the data structures must be able to
represent constrained subfacets and subsegments, and be able to associate attributes with subfacets, subseg-
ments, elements, and vertices. As in the two-dimensional case, such attributes might be associated with each
element of the mesh, but the only edges and faces that generally carry such information are subsegments and
subfacets. Hence, the tetrahedron-based data structure is more utilitarian that the face-based data structure.
The tetrahedral data structure almost certainly results in a faster implementation, if the two-dimensional De-
launay implementations are any indication. I have not attempted implementing tetrahedralization algorithms
with any other data structure.

The remainder of this section is devoted to a discussion of how the tetrahedron-based data structure is
modified in Pyramid to accommodate subfacets and subsegments. Just as the triangular data structure uses
three additional pointers to attach subsegments, the tetrahedral data structure uses four additional pointers
to attach subfacets. As in the two-dimensional case, if the mesh is large, the data structures that represent
subfacets and subsegments occupy only a small portion of memory, and the four pointers from a tetrahe-
dron to adjoining subfacets can be reduced to one, or even zero. Hence, a tetrahedral record consists of
eight pointers if only Delaunay tetrahedralization is performed, or eight, nine, or twelve pointers for mesh
generation. (Pyramid currently uses twelve pointers in the latter case.)

The data structure that represents a subfacet contains three pointers to its vertices, three pointers to
adjoining subfacets, and two pointers to adjoining tetrahedra. The three pointers to adjoining subfacets are
used only to indicate coplanar neighbors in a common facet. These pointers are important to the Delaunay
refinement algorithm, because they indicate that the shared edge can be flipped to satisfy the Delaunay
criterion when a vertex is inserted in the facet. Figure 5.6 illustrates two subfacets, connected at a flippable
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Figure 5.6:The records representing subfacets (shaded) have pointers to adjoining tetrahedra, subfacets,
and vertices. Subfacets are directly linked to each other only if they are part of the same facet, and the
edge they share is flippable.

(a) (b)

Figure 5.7:(a) Tetrahedra and subsegments are only connected via subfacets. (b) Each subsegment has
a full complement of wings, which are subfacets that anchor it to adjoining tetrahedra.

edge and sandwiched between tetrahedra, that together form a quadrilateral facet. Figure 4.10 in Chapter 4
illustrates a circumstance in which such edge flips occur.

Each subfacet also has three pointers to adjoining subsegments. To save space, there are no pointers
directly connecting tetrahedra and adjoining subsegments; connections between tetrahedra and subsegments
are entirely mediated through subfacets, as illustrated in Figure 5.7(a). Because a subsegment may be shared
by any number of subfacets and tetrahedra, each subsegment has a pointer to only one adjoining subfacet
(chosen arbitrarily); the others must be found through the connectivity of the mesh. To ensure that every
subsegment incident to a tetrahedron may be found, each subsegment has a full complement ofwings, which
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Figure 5.8:Subsegments are represented by degenerate subfacets. A chain of linked subsegments form
a segment. Open circles represent null vertices. The pointers directed upward in the illustration point to
adjoining subfacets, which may or may not be solid. Different subsegments of this segment may even point
to subfacets of different facets.

are subfacets that link a subsegment to its adjoining tetrahedra, as illustrated in Figure 5.7(b). Some or all
of these subfacets may benonsolid subfacets, which are not “real” subfacets, but are present solely for the
purpose of connecting tetrahedra to subsegments. Onlysolid subfacets, which lie within facets, are locked in
place. The faces occupied by nonsolid subfacets are eligible for flipping according to the Delaunay criterion.

It has proven to be quite convenient to represent subsegments with the same data structure used for
subfacets, in a manner illustrated in Figure 5.8. A subfacet record used to represent a subsegment has one
null vertex opposite its “real” edge. A subsegment is similar to a ghost triangle: it is connected at its “real”
edge to an adjoining triangular subfacet, and it is linked to neighboring subsegments (of the same segment)
at its “fake” edges. The decision to represent subsegments with the same data structure used for subfacets
has eliminated the need for much special-case code that Pyramid would otherwise incorporate.

5.3 Implementing Delaunay Refinement Algorithms

This section describes Delaunay refinement as it is implemented in Triangle and Pyramid. Figures 5.9
through 5.13 illustrate the process of meshing a PSLG that represents an electric guitar.

The first stage of both Triangle and Pyramid is to find the Delaunay triangulation or tetrahedralization
of the input vertices, as in Figure 5.10. In general, some of the input segments and facets are missing
from the triangulation; the second stage is to recover them. Figure 5.11 illustrates the constrained Delaunay
triangulation of the input PSLG.

The third stage of the algorithm, which diverges from Ruppert [82], is to remove triangles or tetrahedra
from concavities and holes (Figure 5.12). The fourth stage of the algorithm is to apply a Delaunay refinement
algorithm to the mesh, as described in Chapters 3 and 4. Figure 5.13 illustrates a final mesh having no angles
smaller than20�.

The last three stages are described in the following sections.

5.3.1 Segment and Facet Recovery

Although the theoretical treatment of encroached subsegments and subfacets is no different for those that
are missing and those that are present in the mesh, they are treated very differently in practice. Whereas
missing segments and facets require the maintenance of a separate triangulation of each segment and facet
(which is almost trivial for segments), subsegments and subfacets that are present in the mesh do not, and
their encroachment can be detected much more easily. Furthermore, missing subsegments and subfacets can
sometimes be recovered without inserting a new vertex. For reasons to be stated shortly, this solution is
often preferable.
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Figure 5.9:Electric guitar PSLG.

Figure 5.10:Delaunay triangulation of vertices of PSLG. The triangulation does not conform to all of the
input segments.

Figure 5.11:Constrained Delaunay triangulation of PSLG.

Figure 5.12:Triangles are removed from concavities and holes.

Figure 5.13:Conforming Delaunay triangulation with 20� minimum angle.
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Triangle can force the mesh to conform to the input segments in one of two ways, selectable by the user.
The first was described in Section 3.3; any segment that fails to appear in the mesh is recursively divided by
inserting vertices along its length, using Lawson’s incremental insertion algorithm to maintain the Delaunay
property, until the entire segment is represented as a union of edges of the mesh. Subsegments are locked
as they appear. Input segments that are not missing from the initial triangulation must also be identified and
locked.

The second choice is to simply use a constrained Delaunay triangulation, as Figure 5.11 demonstrates.
Each segment is inserted by deleting the triangles it overlaps, and the region on each side of the segment is
Delaunay triangulated anew (recall Figure 2.16 on Page 21). No new vertices are inserted. Triangle uses the
constrained Delaunay triangulation by default.

Incremental insertion of segments is not an optimal method of constructing a constrained Delaunay tri-
angulation; I could have chosen the optimalO(n logn) divide-and-conquer method of Chew [18] instead.
However, practical inputs are usually composed mainly of short, easily inserted segments. Although Chew’s
algorithm is optimal, it carries a larger constant overhead than purely Delaunay divide-and-conquer trian-
gulation, and would likely be slower on most practical inputs. I have not implemented Chew’s constrained
Delaunay triangulation algorithm, and hence cannot test this notion, but I doubt the effort would be worth
the ends.

Although the definition of “PSLG” normally disallows segment intersections (except at segment end-
points), Triangle can detect segment intersections and insert vertices appropriately. When Triangle is finding
and deleting the triangles that overlap a missing segment, it detects any subsegments that cross the missing
segment, and splits each such subsegment by inserting a new vertex at the intersection point. Triangle also
notices if a missing segment passes through an existing vertex, and recursively inserts the two subsegments
yielded by splitting the segment at the intersecting vertex. However, if a segment passes very close to an
existing vertex, but does not meet it precisely (as determined by the exact predicates described in Chapter 6),
a very small feature is formed; hence, users should be wary of placing vertices in segment interiors in the
hopes that Triangle will deem them collinear. Instead, input segments should be split into smaller input
segments at the vertices they are intended to intersect.

Pyramid, unfortunately, does not have the choice of forming a constrained Delaunay tetrahedralization,
because constrained Delaunay tetrahedralizations do not always exist. However, subsegments and subfacets
can sometimes be introduced into the mesh not by vertex insertion, but by the use of appropriate edge flips.
For instance, a 2-3 flip might be used to restore a missing subsegment, and a 3-2 flip might be used to
restore a missing subfacet. More generally, a missing subsegment or subfacet might be restored by a clever
sequence of flips. However, recall from Chapter 2 that a tetrahedralization that conforms to the missing
subsegments and subfacets does not necessarily exist, and the NP-hardness result of Ruppert and Seidel [83]
suggests that it might not be feasible to determine whether such a tetrahedralization exists. Hence, one must
rely on heuristics when attempting to recover subsegments and subfacets without inserting new vertices.
One must resort to inserting a new vertex, in the manner described in Section 4.2, if the heuristics fail.

One might ask, why go to such trouble to avoid inserting new vertices when recovering missing subseg-
ments and subfacets? After all, if a subsegment or subfacet is missing, there must be a vertex in its protecting
sphere (except in rare degenerate cases), and the subsegment or subfacet will be split anyway. There are two
answers. First, when a subsegment (in two dimensions) or subfacet (in three) has been recovered, its protect-
ing diametral circle or equatorial sphere can be replaced with a diametral lens or equatorial lens, possibly
averting a vertex insertion. Second, overrefinement due to small external features, as described in the next
section, may be reduced or averted.
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5.3.2 Concavities and Holes

In both Triangle and Pyramid, users may create holes in their meshes by specifyinghole pointswhere an
“element-eating virus” is planted and spread by depth-first search until its advance is halted by segments (in
two dimensions) or facets (in three). This simple mechanism saves both the user and the implementation
from a common outlook of solid modeling wherein one must define oriented curves whose insides are
clearly distinguishable from their outsides. Exterior boundaries (which separate a triangulated region from
an untriangulated region, and include boundaries of holes) and interior boundaries (which separate two
triangulated regions) are treated in a unified manner.

If the region being meshed is not convex, concavities are recognized from unlocked edges (in two di-
mensions) or faces (in three dimensions) on the boundary of the mesh, and the same element-eating virus is
used to hollow them out (recall Figure 5.12). The user may select an option that causes the convex hull of
the input to be automatically protected with subsegments or subfacets. If this option is chosen, the user is
relieved of the responsibility of providing a segment-bounded or facet-bounded input. Concavities can still
be created by specifying appropriate hole points just inside the convex hull, but segments or facets must be
used to demarcate the internal boundary of the concavity.

Triangle and Pyramid remove extraneous elements from holes and concavities before the refinement
stage. This presents no problem for the refinement algorithms. The main concern is that general point
location is difficult in a nonconvex triangulation. Fortunately, the most general form of point location is
not needed for Delaunay refinement. Point location is used only to find the circumcenter of an element,
which may be accomplished by walking from the centroid of the element toward the circumcenter. If the
path is blocked by a subsegment or subfacet, the culprit is marked as encroached, and the search may be
abandoned. (Recall that this is precisely how Chew’s second Delaunay refinement algorithm [21] decides to
split a segment.) Because the mesh is segment-bounded (in two dimensions) or facet-bounded (in three), the
search must either succeed or be foiled by an encroached entity. Moreover, in two dimensions, if diametral
circles (rather than lenses) are used, Lemma 13 guarantees that any circumcenter considered for insertion
falls inside the mesh, although roundoff error might perturb it to just outside the mesh. The analogous result
can be proven in three dimensions.

An advantage of removing elements before refinement is that computation is not wasted refining ele-
ments that will eventually be deleted. A more important advantage is illustrated in Figure 5.14. If extraneous
elements remain during the refinement stage, overrefinement can occur if very small features outside the ob-
ject being meshed cause the creation of small elements inside the mesh. Ruppert [82] suggests solving this
problem by using the constrained Delaunay triangulation and ignoring interactions that take place outside
the region being triangulated. Early removal of triangles provides a nearly effortless way to accomplish this
effect. Subsegments and subfacets that would normally be considered encroached are ignored (Figure 5.14,
right), because encroached subsegments are diagnosed by noticing that they occur opposite an obtuse angle
in a triangle. (See the next section for details.)

This advantage can be cast into a formal framework by redefining the notion of local feature size. Let
thegeodesic distancebetween two points be the length of the shortest path between them that does not pass
through an untriangulated region of the plane. In other words, any geodesic path must go around holes and
concavities. Given a PSLGX and a pointp in the triangulated region ofX, define the local feature size lfs(p)
to be the smallest value such that there exist two pointsu andv that lie on nonincident vertices or segments
of X, and each ofu and v is within a geodesic distance of lfs(p) from p. This is essentially the same
as the definition of local feature size given in Section 3.3.2, except that Euclidean distances are replaced
with geodesic distances. All of the proofs in Chapter 3 can be made to work with geodesic distances,
because Lemma 14 depends only upon the triangle inequality, which holds for geodesic distances as well as
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Figure 5.14:Two variations of Ruppert’s Delaunay refinement algorithm with a 20� minimum angle. Left:
Mesh created using segment recovery by recursive splitting and late removal of triangles. This illustration
shows exterior triangles, just prior to their removal, to show why overrefinement occurs. Right: Mesh created
using the constrained Delaunay triangulation and early removal of triangles.

Euclidean distances, and because a child and its parent are never separated by an untriangulated region of
the plane. This change can yield improved bounds on edge lengths in some regions of the mesh, because
small exterior features are no longer taken into account in the definition of local feature size.

These observations about geodesic distance can also be applied to surface meshing, wherein one meshes
two-dimensional planar surfaces embedded in three dimensions. These surfaces may meet at shared seg-
ments, so that small feature sizes in one surface may propagate into another. Again, the geodesic distance
between two points is the length of the shortest path between them that does not pass through an untriangu-
lated region. Hence, the path is restricted to lie in the input surfaces. Two-dimensional Delaunay refinement
algorithms may be applied in this context with virtually no change.

The problem of overrefinement due to small external features is not solved for tetrahedral meshing,
however. Constrained Delaunay tetrahedralizations are not an option, and the vertex insertion method for
recovering segments and facets can overrefine. However, if missing subsegments and subfacets are given
priority over other encroached subsegments and subfacets; if they are recovered with as few vertex insertions
as possible (using heuristic methods based on flips, as described in the previous section); and if holes are
emptied immediately after all missing subsegments and subfacets are recovered, much or all of the potential
overrefinement can be avoided. However, I can offer no guarantee.

Another source of spurious small features is the convex hull of the input, which appears as the boundary
edges or faces of the initial triangulation. To give a two-dimensional example, if an input vertex lies just
inside the convex hull, and the nearest convex hull edge is treated as a subsegment, then the local feature size
near the vertex may be artificially reduced to an arbitrarily small length. In three dimensions, this problem
may be caused not only by vertices just inside the convex hull, but also by segments that pass near convex
hull edges. These may arise, for instance, when the input is a pre-triangulated surface mesh with exterior
dihedral angles that are slightly less than180�, just short of convexity. When the input is tetrahedralized,
sliver tetrahedra may fill these crevices.

Hence, it is important that convex hull edges and faces are not treated as subsegments and subfacets,
except for those edges and faces specifically identified by the user as such. However, if the mesh is not
segment-bounded or facet-bounded, it is not clear how to treat exterior skinny triangles or tetrahedra whose
circumcenters fall outside the mesh. The removal of elements from concavities yields a segment-bounded
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(a) (b)

Figure 5.15:(a) Constrained Delaunay triangulation of the guitar PSLG and its convex hull. (b) Close-up of
a small angle formed at the bottom of PSLG because of the convex hull.

or facet-bounded mesh, so that Delaunay refinement may proceed.

Small angles present another motivation for removing elements from holes and concavities prior to
applying the Delaunay refinement algorithm. If a small angle is present within a hole or concavity (rather
than in the triangulated portion of the PSLG), the small angle has no effect on the meshing process. However,
if the mesh were refined prior to the carving of concavities and holes, unnecessarily small elements might
be produced, or the refinement stage might fail to terminate. This problem can appear with dastardly stealth
when meshing certain nonconvex objects that do not appear to have small angles. A very small angle may be
unexpectedly formed between a defining segment of the object and an edge of the convex hull, as illustrated
in Figure 5.15. The user, unaware of the effect of the convex hull edge, would be mystified why the Delaunay
refinement algorithm fails to terminate on what appears to be an easy PSLG. (In fact, this is how the negative
result of Section 3.6 first became evident to me.) Early removal of elements from concavities evades this
problem.

In Triangle and Pyramid, the same segment-bounded or facet-bounded depth-first search used to demar-
cate holes and concavities is also used to tag the elements of selected regions of the mesh with markers that
indicate which region they lie in.

5.3.3 Delaunay Refinement

The refinement stage is illustrated on a two-dimensional PSLG in Figure 5.16. As was noted in the previous
section, holes and interior boundaries are easily accommodated by the Delaunay refinement algorithm.

Triangle maintains a queue of encroached subsegments and a queue of skinny triangles, each of which
are initialized at the beginning of the refinement stage and maintained throughout; every vertex insertion
may add new members to either queue. Pyramid maintains queues of encroached subsegments, encroached
subfacets, and skinny tetrahedra. The queues of encroached subsegments and subfacets rarely contain more
than a few items, except at the beginning of the refinement stage, when they may contain many.

Each queue is initialized by traversing a list of all subsegments, subfacets, triangles, or tetrahedra present
in the mesh. Detection of encroached subsegments and subfacets is a local operation. For instance, a
subsegment may be tested for encroachment by inspecting only those vertices that appear directly opposite
the subsegment in a triangle (a triangular face in three dimensions).

To see why this fact is true, consider Figure 5.17(a). Both of the vertices (v andw) opposite the segment
s lie outside the diametral circle ofs. Because the mesh is constrained Delaunay, each triangle’s circumcircle
is empty (on its side ofs), and therefore the diametral circle ofs is empty. As Figure 5.17(b) shows, the same
argument is true of diametral lenses, because a diametral lens is defined by circular arcs passing through a
segment’s endpoints.
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Figure 5.16: Demonstration of the refinement stage. The first two images are the input PSLG and its
constrained Delaunay triangulation. In each image, highlighted segments or triangles are about to be split,
and highlighted vertices are rejected for insertion. Note that the algorithm easily accommodates interior
boundaries and holes.
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Figure 5.17:(a) If the apices (here, v and w) of the triangles that contain a subsegment s are outside the
diametral circle of s, then no vertex lies in the diametral circle of s, because the triangles are Delaunay. (b)
The same statement is true for the diametral lens of s.
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The same arguments apply in three dimensions to diametral spheres, equatorial spheres, and equatorial
lenses. In each case, a subsegment or subfacet may be quickly tested for encroachment by testing only the
tetrahedra that contain the subsegment or subfacet in question.

After the queues are initialized, the Delaunay refinement process may cause other subsegments and
subfacets to become encroached. The most obvious way to test whether a new vertex encroaches upon
some subsegment or subfacet is to insert it into the triangulation, then test each of the edges and faces that
appear opposite the vertex in some triangle, tetrahedron, or triangular face. If a subsegment or subfacet is
encroached, it is inserted into the appropriate queue, and the new vertex may have to be deleted from the
mesh. The decision to accept or reject a vertex depends on the type of vertex being inserted.

� Subsegment midpoints:These are never rejected.

� Subfacet circumcenters:According to the description of three-dimensional Delaunay refinement given
in Chapter 4, these are rejected if they encroach upon a subsegment. However, to obtain the bounds
proven in Chapter 4, it is only necessary to reject a subfacet circumcenter if it encroaches upon a
subsegment of the same facet. This fact reduces the amount of testing that must be done.

� Circumcenters of skinny triangles and tetrahedra:These are rejected if they encroach upon any sub-
segment or subfacet.

The test for subsegments, if they are protected by diametral circles or spheres, is quite simple. Lett be
a triangle formed by a subsegments and a vertexv opposite it. If the angle atv is greater than90�, then
v encroaches upons; this test reduces to a dot product. The tests for encroachment of diametral lenses,
equatorial spheres, and equatorial lenses are more complicated.

I turn from the topic of detecting encroachment to the topic of managing the queue of skinny elements
(which also holds elements that are too large, as dictated by bounds specified by the user). Each time a vertex
is inserted or deleted, each new triangle or tetrahedron that appears is tested, and is inserted into the queue if
its quality is too poor, or its area or volume too large. The number of triangles or tetrahedra in the final mesh
is determined in part by the order in which skinny elements are split, especially when a strong quality bound
is used. Figure 5.18 demonstrates how sensitive Ruppert’s algorithm is to the order. For this example with a
33� minimum angle, a heap of skinny triangles indexed by their smallest angle confers a 35% reduction in
mesh size over a first-in first-out queue. (This difference is typical for strong angle bounds, but thankfully
seems to disappear for small angle bounds.) The discrepancy probably occurs because circumcenters of
very skinny triangles are likely to eliminate more skinny triangles than circumcenters of mildly skinny
triangles. Unfortunately, a heap is slow for large meshes, especially when small area constraints force all of
the elements into the heap. Delaunay refinement usually takesO(n) time in practice, but the use of a heap
increases the complexity toO(n logn).

The solution used in Triangle and Pyramid, chosen experimentally, is to use 64 FIFO queues, each
representing a different interval of circumradius-to-shortest edge ratios. Oddly, it is counterproductive in
practice to order well-shaped elements, so one queue is used for well-shaped but too-large elements whose
quality ratios are all roughly smaller than0:8 (in Triangle, corresponding to an angle of about39�) or one (in
Pyramid). Elements with larger quality ratios are partitioned among the remaining queues. When a skinny
element is chosen for splitting, it is taken from the “worst” nonempty queue. A queue of nonempty queues
is maintained so that a skinny element may be chosen quickly. This method yields meshes comparable with
those generated using a heap, but is only slightly slower than using a single queue.
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Figure 5.18:Two meshes with a 33� minimum angle. The left mesh, with 290 triangles, was formed by
always splitting the worst existing triangle. The right mesh, with 450 triangles, was formed by using a
first-come first-split queue of skinny triangles.

During the refinement phase, Triangle generates about 22,800 new vertices per second on a DEC
3000/700. Pyramid generates a more modest 800 vertices per second. Vertices are inserted using a flip-
based incremental Delaunay algorithm, but in Triangle are inserted much more quickly than Table 5.1 would
suggest because a triangle’s circumcenter can be located quickly by starting the search at the triangle.

5.4 Conclusions

Triangle and Pyramid were originally designed and implemented to meet the needs of the Quake project [7]
at Carnegie Mellon University, a multidisciplinary effort to study earthquake-induced ground motion in the
Los Angeles basin. Such a study is necessarily of large magnitude, and exerts a great deal of stress on the
software infrastructure that supports it. Triangle and Pyramid have risen to the challenge, generating meshes
of up to 77 million tetrahedral elements. As well as using Triangle within the Quake project, I have released
it for public use, and expect to release Pyramid in a similar manner within the next year.

In the two years since Triangle was released to the public, I have heard from researchers and developers
who are using Triangle for a surprising variety of applications. Triangle seems to be particularly popular
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for triangulating survey and map data; for maintaining terrain databases, especially for use in real-time
simulations; and for discontinuity meshing for global illumination methods such as radiosity. I have also
heard from individuals using Triangle for more surprising applications, such as stereo vision, interpolation of
speech signals, computing the orientation of text images, modeling reflections of high frequency radio from
structures in cities, modeling the density of stars in the sky, the triangulation of virtual worlds for a video
game, and ecological research culminating in a paper by N. V. Joshi, entitled “The Spatial Organization of
Plant Communities in a Deciduous Forest.”

Of course, Triangle has also been used by many researchers for numerical simulation. Applications
include electrical current propagation in the myocardium, simulation of surgery on a model of the human
cornea, transport processes in estuaries and coastal waters, tomographic models of the seismic structure be-
neath Eurasia, Schr¨odinger’s equation in quantum confined structures, two-and-a-half-dimensional waveg-
uide problems, electrostatic and magnetostatic modeling of complex multielectrode systems, control volume
FEM for fluid flow and heat transfer, and surface meshing for BEM on integrated circuits.

These examples represent only a selected few of the applications that people have written to tell me
about, which in turn surely represent only a fraction of the people who are using Triangle. Several compa-
nies have also purchased licenses to use Triangle in their commercial products, for purposes including beam
element visualization, thermal analysis, interpolation between grids for an ocean floor database, visualiza-
tion of mining data, and cartoon animation.

The upshot is that there has long been an unanswered need for robust mesh generation in a great variety
of application domains. Although there was triangular meshing software available freely on the net prior to
Triangle, many of my users report that none had the combination of flexibility, robustness, and ease of use
of Triangle.



Chapter 6

Adaptive Precision Floating-Point
Arithmetic and Fast Robust Geometric
Predicates

From the beginning of the implementation of Triangle, and well into the development of Pyramid, floating-
point roundoff problems plagued me. Each program would sometimes crash, sometimes find itself stuck in
an endless loop, and sometimes produce garbled output. At first I believed that I would be able to fix the
problems by understanding how the algorithms went wrong when roundoff error produced incorrect answers,
and writing special-case code to handle each potential problem. Some of the robustness problems yielded
to this approach, but others did not. Fortunately, Steven Fortune of AT&T Bell Laboratories convinced me,
in a few brief but well-worded email messages (and in several longer and equally well-worded technical
papers), to choose the alternative path to robustness, which led to the research described in this chapter. For
reasons that will become apparent, exact arithmetic is the better approach to solving many, if not all, of the
robustness worries associated with triangulation.

Herein, I make three contributions to geometric robustness, the first two of which I hope will find appli-
cation elsewhere in numerical analysis. The first is to offer fast software-level algorithms for exact addition
and multiplication of arbitrary precision floating-point values. The second is to propose a technique for
adaptive precision arithmetic that can often speed these algorithms when one wishes to perform multipreci-
sion calculations that do not always require exact arithmetic, but must satisfy some error bound. The third is
to provide a practical demonstration of these techniques, in the form of implementations of several common
geometric calculations whose required degree of accuracy depends on their inputs. These robust geometric
predicates are adaptive; their running time depends on the degree of uncertainty of the result, and is usually
small.

These algorithms work on computers whose floating-point arithmetic uses radix two and exact rounding,
including machines complying with the IEEE 754 standard. The inputs to the predicates may be arbitrary
single or double precision floating-point numbers. C code is publicly available for the 2D and 3D orientation
and incircle tests, and is used very successfully in both Triangle and Pyramid. Timings of the implementa-
tions demonstrate their effectiveness.

145
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6.1 Introduction

Software libraries for arbitrary precision floating-point arithmetic can be used to accurately perform many
error-prone or ill-conditioned computations that would be infeasible using only hardware-supported approx-
imate arithmetic. Some of these computations have accuracy requirements that vary with their input. For
instance, consider the problem of finding the center of a circle, given three points that lie on the circle.
Normally, hardware precision arithmetic will suffice, but if the input points are nearly collinear, the problem
is ill-conditioned and the approximate calculation may yield a wildly inaccurate result or a division by zero.
Alternatively, an exact arithmetic library can be used and will yield a correct result, but exact arithmetic is
slow; one would rather use it only when one really needs to.

This chapter presents two techniques for writing fast implementations of extended precision calculations
like these, and demonstrates them with implementations of four commonly used geometric predicates. The
first technique is a suite of algorithms, several of them new, for performing arbitrary precision arithmetic.
The method has its greatest advantage in computations that process values of extended but small preci-
sion (several hundred or thousand bits), and seems ideal for computational geometry and some numerical
methods, where much benefit can be realized from a modest increase in precision. The second technique
is a way to modify these algorithms so that they compute their result adaptively; they are quick in most
circumstances, but are still slow when their results are prone to have high relative error. A third subject of
this chapter is a demonstration of these techniques with implementations and performance measurements of
four commonly used geometric predicates. An elaboration of each of these three topics follows.

Methods of simulating exact arithmetic in software can be classified by several characteristics. Some
exact arithmetic libraries operate on integers or fixed-point numbers, while others operate on floating-point
numbers. To represent a number, the former libraries store a significand of arbitrary length; the latter store
an exponent as well. Some libraries use the hardware’s integer arithmetic units, whereas others use the
floating-point units. Oddly, the decision to use integers or floating-point numbers internally is orthogonal to
the type of number being represented. It was once the norm to use integer arithmetic to build extended preci-
sion floating-point libraries, especially when floating-point hardware was uncommon and differed between
computer models. Times have changed, and modern architectures are highly optimized for floating-point
performance; on many processors, floating-point arithmetic is faster than integer arithmetic. The trend is
reversing for software libraries as well, and there are several proposals to use floating-point arithmetic to
perform extended-precision integer calculations. Fortune and Van Wyk [37, 36], Clarkson [23], and Avnaim,
Boissonnat, Devillers, Preparata, and Yvinec [2] have described algorithms of this kind, designed to attack
the same computational geometry robustness problems considered later in this chapter. These algorithms
are surveyed in Section 6.2.

Another differentiating feature of multiprecision libraries is whether they use multiple exponents. Most
arbitrary precision libraries store numbers in amultiple-digit format, consisting of a sequence of digits (usu-
ally of large radix, like232) coupled with a single exponent. A freely available example of the multiple-digit
approach is Bailey’s MPFUN package [4], a sophisticated portable multiprecision library that uses digits
of machine-dependent radix (usually224) stored as single precision floating-point values. An alternative is
themultiple-componentformat, wherein a number is expressed as a sum of ordinary floating-point words,
each with its own significand and exponent [76, 26, 61]. This approach has the advantage that the result of
an addition like2300 + 2�300 (which may well arise in calculations like the geometric predicates discussed
in Section 6.5.1) can be stored in two words of memory, whereas the multiple-digit approach will use at
least 601 bits to store the sum, and incur a corresponding speed penalty when performing arithmetic with
it. On the other hand, the multiple-digit approach can more compactly represent most numbers, because
only one exponent is stored. (MPFUN sacrifices this compactness to take advantage of floating-point hard-



Introduction 147

ware; the exponent of each digit is unused.) More pertinent is the difference in speed, discussed briefly in
Section 6.3.1.

The algorithms described herein use floating-point hardware to perform extended precision floating-
point arithmetic, using the multiple-component approach. These algorithms, described in Section 6.3, work
under the assumption that hardware arithmetic is performed in radix two with exact rounding. This assump-
tion holds on processors compliant with the IEEE 754 floating-point standard. Proofs of the correctness of
all algorithms are given.

The methods herein are closely related to, and occasionally taken directly from, methods developed
by Priest [76, 77], but are faster. The improvement in speed arises partly because Priest’s algorithms run
on a wide variety of floating-point architectures, with different radices and rounding behavior, whereas
mine are limited to and optimized for radix two with exact rounding. This specialization is justified by
the wide acceptance of the IEEE 754 standard. My algorithms also benefit from a relaxation of Priest’s
normalization requirement, which is less strict than the normalization required by multiple-digit algorithms,
but is nonetheless time-consuming to enforce.

I demonstrate these methods with publicly available code that performs the two-dimensional and three-
dimensional orientation and incircle tests, calculations that commonly arise in computational geometry. The
orientation test determines whether a point lies to the left of, to the right of, or on a line or plane; it is
an important predicate used in many (perhaps most) geometric algorithms. The incircle test determines
whether a point lies inside, outside, or on a circle or sphere, and is used for Delaunay triangulation. Inexact
versions of these tests are vulnerable to roundoff error, and the wrong answers they produce can cause
geometric algorithms to hang, crash, or produce incorrect output. Although exact arithmetic banishes these
difficulties, it is common to hear reports of implementations being slowed by factors of ten or more as
a consequence [56, 36]. For these reasons, computational geometry is an important arena for evaluating
extended precision arithmetic schemes.

The orientation and incircle tests evaluate the sign of a matrix determinant. It is significant that only
the sign, and not the magnitude, of the determinant is needed. Fortune and Van Wyk [36] take advantage of
this fact by using a floating-point filter: the determinant is first evaluated approximately, and only if forward
error analysis indicates that the sign of the approximate result cannot be trusted does one use an exact
test. I carry their suggestion to its logical extreme by computing a sequence of successively more accurate
approximations to the determinant, stopping only when the accuracy of the sign is assured. To reduce
computation time, approximations reuse a previous, less accurate computation when it is economical to do
so. Procedures thus designed are adaptive; they refine their results until they are certain of the correctness
of their answer. The technique is not limited to computational geometry, nor is it limited to finding signs
of expressions; it can be employed in any calculation where the required degree of accuracy varies. This
adaptive approach is described in Section 6.4, and its application to the orientation and incircle tests is
described in Section 6.5.

Readers who wish to use these predicates in their own applications are encouraged to download them
and try them out. However, be certain to read Section 6.6, which covers two important issues that must
be considered to ensure the correctness of the implementation: your processor’s floating-point behavior
and your compiler’s optimization behavior. Furthermore, be aware that exact arithmetic is not a panacea
for all robustness woes; its uses and limitations are discussed in Section 6.2. Exact arithmetic can make
robust many algorithms that take geometric input and return purely combinatorial output; for instance, a
fully robust convex hull implementation can be produced with recourse only to an exact orientation test.
However, in algorithms that construct new geometric objects, exact arithmetic is sometimes constrained by
its cost and its inability to represent arbitrary irrational numbers.
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A few words are appropriate to describe some of the motivation for pursuing robust predicates for
floating-point, rather than integer, operands. One might argue that real-valued input to a geometric pro-
gram can be scaled and approximated in integer form. Indeed, there are few geometric problems that truly
require the range of magnitude that floating-point storage provides, and integer formats had a clear speed
advantage over floating-point formats for small-scale exact computation prior to the present research. The
best argument for exact floating-point libraries in computational geometry, besides convenience, is the fact
that many existing geometric programs already use floating-point numbers internally, and it is easier to
replace their geometric predicates with robust floating-point versions than to retrofit the programs to use
integers throughout. Online algorithms present another argument, because they are not always compatible
with the scaled-input approach. One cannot always know in advance what resolution will be required, and
repeated rescalings may be necessary to support an internal integer format when the inputs are real and
unpredictable. In any case, I hope that this research will make it easier for programmers to choose between
integer and floating-point arithmetic as they prefer.

6.2 Related Work in Robust Computational Geometry

Most geometric algorithms are not originally designed for robustness at all; they are based on thereal RAM
model, in which quantities are allowed to be arbitrary real numbers, and all arithmetic is exact. There are
several ways a geometric algorithm that is correct within the real RAM model can go wrong in an encounter
with roundoff error. The output might be incorrect, but be correct for some perturbation of its input. The
result might be usable yet not be valid for any imaginable input. Or, the program may simply crash or fail
to produce a result. To reflect these possibilities, geometric algorithms are divided into several classes with
varying amounts of robustness:exact algorithms, which are always correct;robust algorithms, which are
always correct for some perturbation of the input;stable algorithms, for which the perturbation is small;
quasi-robust algorithms, whose results might be geometrically inconsistent, but nevertheless satisfy some
weakened consistency criterion; andfragile algorithms, which are not guaranteed to produce any usable
output at all. The next several pages are devoted to a discussion of representative research in each class,
and of the circumstances in which exact arithmetic and other techniques are or are not applicable. For more
extensive surveys of geometric robustness, see Fortune [34] and Hoffmann [50].

Exact algorithms. A geometric algorithm isexactif it is guaranteed to produce a correct result when given
an exact input. (Of course, the input to a geometric algorithm may only be an approximation of some real-
world configuration, but this difficulty is ignored here.) Exact algorithms use exact arithmetic in some form,
whether in the form of a multiprecision library or in a more disguised form.

There are several exact arithmetic schemes designed specifically for computational geometry; most are
methods for exactly evaluating the sign of a determinant, and hence can be used to perform the orientation
and incircle tests. Clarkson [23] proposes an algorithm for using floating-point arithmetic to evaluate the
sign of the determinant of a small matrix of integers. A variant of the modified Gram-Schmidt procedure
is used to improve the conditioning of the matrix, so that the determinant can subsequently be evaluated
safely by Gaussian elimination. The 53 bits of significand available in IEEE double precision numbers are
sufficient to operate on10 � 10 matrices of 32-bit integers. Clarkson’s algorithm is naturally adaptive; its
running time is small for matrices whose determinants are not near zero1.

1The method presented in Clarkson’s paper does not work correctly if the determinant is exactly zero, but Clarkson (personal
communication) notes that it is easily fixed. “By keeping track of the scaling done by the algorithm, an upper bound can be
maintained for the magnitude of the determinant of the matrix. When that upper bound drops below one, the determinant must be
zero, since the matrix entries are integers, and the algorithm can stop.”
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Recently, Avnaim, Boissonnat, Devillers, Preparata, and Yvinec [2] proposed an algorithm to evaluate
signs of determinants of2� 2 and3� 3 matrices ofp-bit integers using onlyp and(p+ 1)-bit arithmetic,
respectively. Surprisingly, this is sufficient even to implement the insphere test (which is normally written
as a4 � 4 or 5 � 5 determinant), but with a handicap in bit complexity; 53-bit double precision arithmetic
is sufficient to correctly perform the insphere test on points having 24-bit integer coordinates.

Fortune and Van Wyk [37, 36] propose a more general approach (not specific to determinants, or even
to predicates) that represents integers using a standard multiple-digit technique with digits of radix223

stored as double precision floating-point values. (53-bit double precision significands make it possible
to add several products of 23-bit integers before it becomes necessary to normalize.) Rather than use a
general-purpose arbitrary precision library, they have developed LN, an expression compiler that writes
code to evaluate a specific expression exactly. The size of the operands is arbitrary, but is fixed when LN
is run; an expression can be used to generate several functions, each for arguments of different bit lengths.
Because the expression and the bit lengths of all operands are fixed in advance, LN can tune the exact
arithmetic aggressively, eliminating loops, function calls, and memory management. The running time of
a function produced by LN depends on the bit complexity of the inputs. Fortune and Van Wyk report an
order-of-magnitude speed improvement over the use of multiprecision libraries (for equal bit complexity).
Furthermore, LN gains another speed improvement by installing floating-point filters wherever appropriate,
calculating error bounds automatically.

Karasick, Lieber, and Nackman [56] report their experiences optimizing a method for determinant evalu-
ation using rational inputs. Their approach reduces the bit complexity of the inputs by performing arithmetic
on intervals (with low precision bounds) rather than exact values. The determinant thus evaluated is also
an interval; if it contains zero, the precision is increased and the determinant reevaluated. The procedure
is repeated until the interval does not contain zero (or contains only zero), and the result is certain. Their
approach is thus adaptive, although it does not appear to use the results of one iteration to speed the next.

Because the Clarkson and Avnaim et al. algorithms are effectively restricted to low precision integer
coordinates, I do not compare their performance with that of my algorithms, though theirs may be faster.
Floating-point inputs are more difficult to work with than integer inputs, partly because of the potential for
the bit complexity of intermediate values to grow more quickly. (The Karasick et al. algorithm also suffers
this difficulty, and is probably not competitive with the other techniques discussed here, although it may be
the best existing alternative for algorithms that require rational numbers, such as those computing exact line
intersections.) When it is necessary for an algorithm to use floating-point coordinates, the aforementioned
methods are not currently an option (although it might be possible to adapt them using the techniques of
Section 6.3). I am not aware of any prior literature on exact determinant evaluation that considers floating-
point operands, except for one limited example: Ottmann, Thiemt, and Ullrich [74] advocate the use of an
accurate scalar productoperation, ideally implemented in hardware (though the software-level distillation
algorithm described in Section 6.3.8 may also be used), as a way to evaluate some predicates such as the 2D
orientation test.

Exact determinant algorithms do not satisfy the needs of all applications. A program that computes line
intersections requires rational arithmetic; an exact numerator and exact denominator must be stored. If the
intersections may themselves become endpoints of lines that generate more intersections, then intersections
of greater and greater bit complexity may be generated. Even exact rational arithmetic is not sufficient for
all applications; a solid modeler, for instance, might need to determine the vertices of the intersection of
two independent solids that have been rotated through arbitrary angles. Yet exact floating-point arithmetic
can’t even cope with rotating a square45� in the plane, because irrational vertex coordinates result. The
problem of constructed irrational values has been partly attacked by the implementation of “real” numbers
in the LEDA library of algorithms [13]. Values derived from square roots (and other arithmetic operations)
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are stored in symbolic form when necessary. Comparisons with such numbers are resolved with great
numerical care, albeit sometimes at great cost; separation bounds are computed where necessary to ensure
that the sign of an expression is determined accurately. Floating-point filters and another form of adaptivity
(approximating a result repeatedly, doubling the precision each time) are used as well.

For the remainder of this discussion, consideration is restricted to algorithms whose input is geometric
(e.g. coordinates are specified) but whose output is purely combinatorial, such as the construction of a
convex hull or an arrangement of hyperplanes.

Robust algorithms. There are algorithms that can be made correct with straightforward implementations
of exact arithmetic, but suffer an unacceptable loss of speed. An alternative is to relax the requirement of
a correct solution, and instead accept a solution that is “close enough” in some sense that depends upon
the application. Without exact arithmetic, an algorithm must somehow find a way to produce sensible
output despite the fact that geometric tests occasionally tell it lies. No general techniques have emerged yet,
although bandages have appeared for specific algorithms, usually ensuring robustness or quasi-robustness
through painstaking design and error analysis. The lack of generality of these techniques is not the only
limitation of the relaxed approach to robustness; there is a more fundamental difficulty that deserves careful
discussion.

When disaster strikes and a real RAM-correct algorithm implemented in floating-point arithmetic fails to
produce a meaningful result, it is often because the algorithm has performed tests whose results are mutually
contradictory. Figure 6.1 shows an error that arose in the triangulation merging subroutine of Triangle’s
divide-and-conquer Delaunay triangulation implementation. The geometrically nonsensical triangulation in
the illustration was produced.

On close inspection with a debugger, I found that the failure was caused by a single incorrect result
of the incircle test. At the bottom of Figure 6.1 appear four nearly collinear points whose deviation from
collinearity has been greatly exaggerated for clarity. The pointsa, b, c, andd had been sorted by their
x-coordinates, andb had been correctly established (by orientation tests) to lie below the lineac and above
the linead. In principle, a program could deduce from these facts thata cannot fall inside the circledcb.
Unfortunately, the incircle test incorrectly declared thata lay inside, thereby leading to the invalid result.

It is significant that the incircle test was not just wrong about these particular points; it was inconsistent
with the “known combinatorial facts.” A correct algorithm (that computes a purely combinatorial result)
will produce a meaningful result if its test results are wrong but are consistent with each other, because there
exists an input for which those test results are correct. Following Fortune [32], an algorithm isrobust if it
always produces the correct output under the real RAM model, and under approximate arithmetic always
produces an output that is consistent with some hypothetical input that is a perturbation of the true input; it
is stableif this perturbation is small. Typically, bounds on the perturbation are proven by backward error
analysis. Using only approximate arithmetic, Fortune gives an algorithm that computes a planar convex hull
that is correct for points that have been perturbed by a relative error of at mostO(�) (where� is the machine
epsilon, defined in Section 6.4.2), and an algorithm that maintains a triangulation that can be made planar by
perturbing each vertex by a relative error of at mostO(n2�), wheren is the number of vertices. If it seems
surprising that a “stable” algorithm cannot keep a triangulation planar, consider the problem of inserting a
new vertex so close to an existing edge that it is difficult to discern which side of the edge the vertex falls
on. Only exact arithmetic can prevent the possibility of creating an “inverted” triangle.

One might wonder if my triangulation program can be made robust by avoiding any test whose result
can be inferred from previous tests. Fortune [32] explains that

[a]n algorithm isparsimoniousif it never performs a test whose outcome has already been deter-
mined as the formal consequence of previous tests. A parsimonious algorithm is clearly robust,
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Figure 6.1:Top left: A Delaunay triangulation. Top right: An invalid triangulation created due to roundoff
error. Bottom: Exaggerated view of the inconsistencies that led to the problem. The algorithm “knew” that
the point b lay between the lines ac and ad, but an incorrect incircle test claimed that a lay inside the circle
dcb.

since any path through the algorithm must correspond to some geometric input; making an al-
gorithm parsimonious is the most obvious way of making it robust. In principle it is possible to
make an algorithm parsimonious: since all primitive tests are polynomial sign evaluations, the
question of whether the current test is a logical consequence of previous tests can be phrased as
a statement of the existential theory of the reals. This theory is at least NP-hard and is decidable
in polynomial space [15]. Unfortunately, the full power of the theory seems to be necessary for
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some problems. An example is theline arrangement problem: given a set of lines (specified
by real coordinates(a; b; c), so thatax + by = c), compute the combinatorial structure of the
resulting arrangement in the plane. It follows from recent work of Mnev [71] that the problem
of deciding whether a combinatorial arrangement is actually realizable with lines is as hard as
the existential theory of the reals. Hence a parsimonious algorithm for the line arrangement
problem . . . seems to require the solution of NP-hard problems.

Because exact arithmetic does not require the solution of NP-hard problems, an intermediate course
is possible; one could employ parsimony whenever it is efficient to do so, and resort to exact arithmetic
otherwise. Consistency is guaranteed if exact tests are used to bootstrap the “parsimony engine.” I am not
aware of any algorithms in the literature that take this approach, although geometric algorithms are often
designed by their authors to avoid the more obviously redundant tests.

Quasi-robust algorithms. The difficulty of determining whether a line arrangement is realizable suggests
that, without exact arithmetic, robustness as defined above may be an unattainable goal. However, some-
times one can settle for an algorithm whose output might not be realizable. I place such algorithms in a
bag labeled with the fuzzy termquasi-robust, which I apply to any algorithm whose output is somehow
provably distinguishable from nonsense. Milenkovic [65] circumvents the aforementioned NP-hardness re-
sult while using approximate arithmetic by constructing pseudo-line arrangements; apseudo-lineis a curve
constrained to lie very close to an actual line. Fortune [35] presents a 2D Delaunay triangulation algorithm
that constructs, using approximate arithmetic, a triangulation that is nearly Delaunay in a well-defined sense
using the pseudo-line-like notion of pseudocircles. Unfortunately, the algorithm’s running time isO(n2),
which compares poorly with theO(n logn) time of optimal algorithms. Milenkovic’s and Fortune’s al-
gorithms are bothquasi-stable, having small error bounds. Milenkovic’s algorithm can be thought of as a
quasi-robust algorithm for line arrangements, or as a robust algorithm for pseudo-line arrangements.

Barber [8] pioneered an approach in which uncertainty, including the imprecision of input data, is a part
of each geometric entity.Boxesare structures that specify the location and the uncertainty in location of
a vertex, edge, facet, or other geometric structure. Boxes may arise either as input or as algorithmic con-
structions; any uncertainty resulting from roundoff error is incorporated into their shapes and sizes. Barber
presents algorithms for solving the point-in-polygon problem and for constructing convex hulls in any di-
mension. For the point-in-polygon problem, “can’t tell” is a valid answer if the uncertainty inherent in the
input or introduced by roundoff error prevents a sure determination. The salient feature of Barber’s Quick-
hull convex hull algorithm is that it merges hull facets that cannot be guaranteed (through error analysis)
to be clearly locally convex. Thebox complexproduced by the algorithm is guaranteed to contain the true
convex hull, bounding it, if possible, both from within and without.

The degree of robustness required of an algorithm is typically determined by how its output is used.
For instance, many point location algorithms can fail when given a non-planar triangulation. For this very
reason, my triangulator crashed after producing the flawed triangulation in Figure 6.1.

The reader should take three lessons from this section. First, problems due to roundoff can be severe
and difficult to solve. Second, even if the inputs are imprecise and the user isn’t picky about the accuracy of
the output, internal consistency may still be necessary if any output is to be produced at all; exact arithmetic
may be required even when exact results aren’t. Third, neither exact arithmetic nor clever handling of tests
that tell falsehoods is a universal balm. However, exact arithmetic is attractive when it is applicable, because
it can be employed by na¨ıve program developers without the time-consuming need for careful analysis of a
particular algorithm’s behavior when faced with imprecision. (I occasionally hear of implementations where
more than half the developers’ time is spent solving problems of roundoff error and degeneracy.) Hence,
efforts to improve the speed of exact arithmetic in computational geometry are well justified.
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6.3 Arbitrary Precision Floating-Point Arithmetic

6.3.1 Background

Most modern processors support floating-point numbers of the form�significand� 2exponent. The signif-
icand is ap-bit binary number of the formb:bbb : : :, where eachb denotes a single bit; one additional bit
represents the sign. This research does not address issues of overflow and underflow, so I allow the expo-
nent to be an integer in the range[�1;1]. (Fortunately, many applications have inputs whose exponents
fall within a circumscribed range. The four predicates implemented for this chapter will not overflow nor
underflow if their inputs have exponents in the range[�142; 201] and IEEE 754 double precision arithmetic
is used.) Floating-point values are generallynormalized, which means that if a value is not zero, then its
most significant bit is set to one, and the exponent adjusted accordingly. For example, in four-bit arithmetic,
binary 1101 (decimal13) is represented as1:101 � 23. See the survey by Goldberg [44] for a detailed
explanation of floating-point storage formats, particularly the IEEE 754 standard.

Exact arithmetic often produces values that require more thanp bits to store. For the algorithms herein,
each arbitrary precision value is expressed as anexpansion2 x = xn+ � � �+x2+x1, where eachxi is called
a componentof x and is represented by a floating-point value with ap-bit significand. To impose some
structure on expansions, they are required to benonoverlappingand ordered by magnitude (xn largest,x1
smallest). Two floating-point valuesx andy are nonoverlapping if the least significant nonzero bit ofx is
more significant than the most significant nonzero bit ofy, or vice versa; for instance, the binary values
1100 and�10:1 are nonoverlapping, whereas101 and10 overlap.3 The number zero does not overlap any
number. An expansion is nonoverlapping if all its components are mutually nonoverlapping. Note that
a number may be represented by many possible nonoverlapping expansions; consider1100 + �10:1 =
1001 + 0:1 = 1000 + 1 + 0:1. A nonoverlapping expansion is desirable because it is easy to determine
its sign (take the sign of the largest component) or to produce a crude approximation of its value (take the
component with largest magnitude).

Two floating-point valuesx andy areadjacentif they overlap, ifx overlaps2y, or if 2x overlapsy. For
instance,1100 is adjacent to11, but 1000 is not. An expansion isnonadjacentif no two of its components
are adjacent. Surprisingly, any floating-point value has a corresponding nonadjacent expansion; for instance,
11111 may appear at first not to be representable as a nonoverlapping expansion of one-bit components, but
consider the expansion100000 +�1. The trick is to use the sign bit of each component to separate it from
its larger neighbor. We will later see algorithms in which nonadjacent expansions arise naturally.

Multiple-component algorithms (based on the expansions defined above) can be faster than multiple-
digit algorithms because the latter require expensive normalization of results to fixed digit positions, whereas
multiple-component algorithms can allow the boundaries between components to wander freely. Boundaries
are still enforced, but can fall at any bit position. In addition, it usually takes time to convert an ordinary
floating-point number to the internal format of a multiple-digit library, whereas any ordinary floating-point
numberis an expansion of length one. Conversion overhead can account for a significant part of the cost of
small extended precision computations.

The central conceptual difference between standard multiple-digit algorithms and the multiple-compo-
nent algorithms described herein is that the former perform exact arithmetic by keeping the bit complexity of
operands small enough to avoid roundoff error, whereas the latter allow roundoff to occur, then account for

2Note that this definition ofexpansionis slightly different from that used by Priest [76]; whereas Priest requires that the expo-
nents of any two components of the expansion differ by at leastp, no such requirement is made here.

3Formally,x andy are nonoverlapping if there exist integersr ands such thatx = r2s andjyj < 2s, or y = r2s andjxj < 2s.
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it after the fact. To measure roundoff quickly and correctly, a certain standard of accuracy is required from
the processor’s floating-point units. The algorithms presented herein rely on the assumption that addition,
subtraction, and multiplication are performed withexact rounding. This means that if the exact result can be
stored in ap-bit significand, then the exact result is produced; if it cannot, then it is rounded to the nearest
p-bit floating-point value. For instance, in four-bit arithmetic the product111 � 101 = 100011 is rounded
to 1:001 � 25. If a value falls precisely halfway between two consecutivep-bit values, a tiebreaking rule
determines the result. Two possibilities are the round-to-even rule, which specifies that the value should
be rounded to the nearestp-bit value with an even significand, and the round-toward-zero rule. In four-bit
arithmetic,10011 is rounded to1:010� 24 under the round-to-even rule, and to1:001� 24 under the round-
toward-zero rule. The IEEE 754 standard specifies round-to-even tiebreaking as a default. Throughout this
chapter, the symbols�,	, and
 representp-bit floating-point addition, subtraction, and multiplication with
exact rounding. Due to roundoff, these operators lack several desirable arithmetic properties. Associativity
is an example; in four-bit arithmetic,(1000� 0:011)� 0:011 = 1000, but1000� (0:011� 0:011) = 1001.
A list of reliable identities for floating-point arithmetic is given by Knuth [57].

Roundoff is often analyzed in terms ofulps, or “units in the last place.” An ulp is the effective magnitude
of the low-order (pth) bit of ap-bit significand. An ulp is defined relative to a specific floating point value; I
shall use ulp(a) to denote this quantity. For instance, in four-bit arithmetic, ulp(�1100) = 1, and ulp(1) =
0:001.

Another useful notation is err(a~b), which denotes the roundoff error incurred by using ap-bit floating-
point operation~ to approximate a real operation� (addition, subtraction, multiplication, or division) on
the operandsa andb. Note that whereas ulp is an unsigned quantity, err is signed. For any basic operation,
a ~ b = a � b+ err(a ~ b), and exact rounding guarantees thatjerr(a ~ b)j � 1

2ulp(a ~ b).

In the pages that follow, various properties of floating-point arithmetic are proven, and algorithms for
manipulating expansions are developed based on these properties. Throughout, binary and decimal numbers
are intermixed; the base should be apparent from context. A number is said to beexpressible inp bits if
it can be expressed with ap-bit significand,not counting the sign bit or the exponent. I will occasionally
refer to themagnitude of a bit, defined relative to a specific number; for instance, the magnitude of the
second nonzero bit of binary�1110 is four. The remainder of this section is quite technical; the reader may
wish to skip the proofs on a first reading. The key new results are Theorems 48, 54, and 59, which provide
algorithms for summing and scaling expansions.

6.3.2 Properties of Binary Arithmetic

Exact rounding guarantees thatjerr(a ~ b)j � 1
2ulp(a ~ b), but one can sometimes find a smaller bound for

the roundoff error, as evidenced by the two lemmata below. The first lemma is useful when one operand
is much smaller than the other, and the second is useful when the sum is close to a power of two. For
Lemmata 36 through 40, leta andb bep-bit floating-point numbers.

Lemma 36 Leta� b = a+ b+ err(a� b). The roundoff errorjerr(a� b)j is no larger thanjaj or jbj. (An
analogous result holds for subtraction.)

Proof: Assume without loss of generality thatjaj � jbj. The suma � b is thep-bit floating-point number
closest toa+ b. But a is ap-bit floating-point number, sojerr(a� b)j � jbj � jaj. (See Figure 6.2.) �

Corollary 37 The roundoff errorerr(a� b) can be expressed with ap-bit significand.
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6

101:1 110:0 110:1 111:0 111:1 1000 1001 1010

a a� b

a+ b

Figure 6.2:Demonstration of the first two lemmata. Vertical lines represent four-bit floating-point values.
The roundoff error is the distance between a+ b and a� b. Lemma 36 states that the error cannot be larger
than jbj. Lemma 38(b) states that if ja + bj � 2i(2p+1 + 1) (for i = �2 and p = 4, this means that a+ b falls
into the darkened region), then the error is no greater than 2i. This lemma is useful when a computed value
falls close to a power of two.

Proof: Assume without loss of generality thatjaj � jbj. Clearly, the least significant nonzero bit of err(a�b)
is no smaller in magnitude than ulp(b). By Lemma 36,jerr(a�b)j � jbj; hence, the significand of err(a�b)
is no longer than that ofb. It follows that err(a� b) is expressible inp bits.

Lemma 38 For any basic floating-point operation�, let a ~ b = a � b+ err(a ~ b). Then:

(a) If jerr(a ~ b)j � 2i for some integeri, thenja � bj � 2i(2p + 1).

(b) If jerr(a ~ b)j > 2i for some integeri, thenja � bj > 2i(2p+1 + 1).

Proof:

(a) The numbers2i(2p); 2i(2p � 1); 2i(2p � 2); : : : ; 0 are all expressible inp bits. Any valueja � bj <
2i(2p + 1) is within a distance less than2i from one of these numbers.

(b) The numbers2i(2p+1); 2i(2p+1 � 2); 2i(2p+1 � 4); : : : ; 0 are all expressible inp bits. Any value
ja � bj � 2i(2p+1 + 1) is within a distance of2i from one of these numbers. (See Figure 6.2.) �

The next two lemmata identify special cases for which computer arithmetic is exact. The first shows that
addition and subtraction are exact if the result has smaller magnitude than the operands.

Lemma 39 Suppose thatja+ bj � jaj and ja + bj � jbj. Thena� b = a+ b. (An analogous result holds
for subtraction.)

Proof: Without loss of generality, assumejaj � jbj. Clearly, the least significant nonzero bit ofa+ b is no
smaller in magnitude than ulp(b). However,ja+ bj � jbj. It follows thata+ b can be expressed inp bits.�

Many of the algorithms will rely on the following lemma, which shows that subtraction is exact for two
operands within a factor of two of each other:
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a = 1 1 0 1 a = 1 0 0 1 �21

b = 1 0 1 0 b = 1 0 0 1
a� b = 1 1 a� b = 1 0 0 1

Figure 6.3:Two demonstrations of Lemma 40.

Lemma 40 (Sterbenz [89])Suppose thatb 2 [a2 ; 2a]. Thena	 b = a� b.

Proof: Without loss of generality, assumejaj � jbj. (The other case is symmetric, becausea	b = �b	�a.)
Thenb 2 [a2 ; a]. The difference satisfiesja� bj � jbj � jaj; the result follows by Lemma 39. �

Two examples demonstrating Lemma 40 appear in Figure 6.3. Ifa andb have the same exponent, then
floating-point subtraction is analogous to finding the difference between twop-bit integers of the same sign,
and the result is expressible inp bits. Otherwise, the exponents ofa andb differ by one, becauseb 2 [a2 ; 2a].
In this case, the difference has the smaller of the two exponents, and so can be expressed inp bits.

6.3.3 Simple Addition

An important basic operation in all the algorithms for performing arithmetic with expansions is the addition
of two p-bit values to form a nonoverlapping expansion (of length two). Two such algorithms, due to Dekker
and Knuth respectively, are presented.

Theorem 41 (Dekker [26]) Let a and b be p-bit floating-point numbers such thatjaj � jbj. Then the
following algorithm will produce a nonoverlapping expansionx+ y such thata+ b = x+ y, wherex is an
approximation toa+ b andy represents the roundoff error in the calculation ofx.

FAST-TWO-SUM(a; b)
1 x( a� b
2 bvirtual ( x	 a
3 y ( b	 bvirtual
4 return (x; y)

Proof: Line 1 computesa + b, but may be subject to rounding, so we havex = a + b + err(a � b). By
assumptionjaj � jbj, soa andx must have the same sign (orx = 0).

Line 2 computes the quantitybvirtual, which is the value that wasreally added toa in Line 1. This
subtraction is computed exactly; this fact can be proven by considering two cases. Ifa andb have the same
sign, or if jbj � jaj

2 , thenx 2 [a2 ; 2a] and one can apply Lemma 40 (see Figure 6.4). On the other hand, ifa

andb are opposite in sign andjbj > jaj
2 , thenb 2 [�a

2 ;�a] and one can apply Lemma 40 to Line 1, showing
thatx was computed exactly and thereforebvirtual = b (see Figure 6.5). In either case the subtraction is
exact, sobvirtual = x� a = b+ err(a� b).

Line 3 is also computed exactly. By Corollary 37,b� bvirtual = �err(a� b) is expressible inp bits.

It follows that y = �err(a � b) andx = a + b + err(a � b), hencea + b = x + y. Exact rounding
guarantees thatjyj � 1

2ulp(x), sox andy are nonoverlapping. �
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a = 1 1 1 1 �22

b = 1 0 0 1
x = a� b = 1 0 0 1 �23

a = 1 1 1 1 �22

bvirtual = x	 a = 1 1 0 0

y = b	 bvirtual = � 1 1

Figure 6.4:Demonstration of FAST-TWO-SUM where a and b have the same sign. The sum of 111100 and
1001 is the expansion 1001000+�11.

a = 1 0 0 1 �21

b = � 1 0 1 1
x = a� b = 1 1 1
a = 1 0 0 1 �21

bvirtual = x	 a = � 1 0 1 1

y = b	 bvirtual = 0

Figure 6.5:Demonstration of FAST-TWO-SUM where a and b have opposite sign and jbj > jaj
2

.

Note that the outputsx andy do not necessarily have the same sign, as Figure 6.4 demonstrates. Two-
term subtraction (“FAST-TWO-DIFF”) is implemented by the sequencex ( a 	 b; bvirtual ( a 	 x;
y ( bvirtual 	 b. The proof of the correctness of this sequence is analogous to Theorem 41.

The difficulty with using FAST-TWO-SUM is the requirement thatjaj � jbj. If the relative sizes of
a and b are unknown, a comparison is required to order the addends before invoking FAST-TWO-SUM.
With most C compilers4, perhaps the fastest portable way to implement this test is with the statement
“ if ((a > b) == (a > -b)) ”. This test takes time to execute, and the slowdown may be sur-
prisingly large because on modern pipelined and superscalar architectures, anif statement coupled with
imperfect microprocessor branch prediction may cause a processor’s instruction pipeline to drain. This ex-
planation is speculative and machine-dependent, but the TWO-SUM algorithm below, which avoids a com-
parison at the cost of three additional floating-point operations, is usually empirically faster5. Of course,
FAST-TWO-SUM remains faster if the relative sizes of the operands are knowna priori, and the comparison
can be avoided.

Theorem 42 (Knuth [57]) Let a and b be p-bit floating-point numbers, wherep � 3. Then the follow-
ing algorithm will produce a nonoverlapping expansionx + y such thata + b = x + y, wherex is an

4The exceptions are those few that can identify and optimize thefabs() math library call.
5On a DEC Alpha-based workstation, using the bundled C compiler with optimization level 3, TWO-SUM uses roughly 65% as

much time as FAST-TWO-SUM conditioned with the test “if ((a > b) == (a > -b)) ”. On a SPARCstation IPX, using the
GNU compiler with optimization level 2, TWO-SUM uses roughly 85% as much time. On the other hand, using the SPARCstation’s
bundled compiler with optimization (which produces slower code than gcc), conditional FAST-TWO-SUM uses only 82% as much
time as TWO-SUM. The lesson is that for optimal speed, one must time each method with one’s own machine and compiler.
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a = 1 1: 1 1
b = 1 1 0 1
x = a� b = 1 0 0 0 �21

a = 1 1: 1 1
bvirtual = x	 a = 1 1 0 0

avirtual = x	 bvirtual = 1 0 0

broundoff = b	 bvirtual = 1
aroundoff = a	 avirtual = � 0: 0 1

y = aroundoff� broundoff = 0: 1 1

Figure 6.6:Demonstration of TWO-SUM where jaj < jbj and jaj � jxj. The sum of 11:11 and 1101 is the
expansion 10000+ 0:11.

approximation toa+ b andy is the roundoff error in the calculation ofx.

TWO-SUM(a; b)
1 x( a� b
2 bvirtual ( x	 a
3 avirtual ( x	 bvirtual
4 broundoff( b	 bvirtual
5 aroundoff( a	 avirtual
6 y ( aroundoff� broundoff
7 return (x; y)

Proof: If jaj � jbj, then Lines 1, 2, and 4 correspond precisely to the FAST-TWO-SUM algorithm. Recall
from the proof of Theorem 41 that Line 2 is calculated exactly; it follows that Line 3 of TWO-SUM is
calculated exactly as well, becauseavirtual = a can be expressed exactly. Hence,aroundoff is zero,
y = broundoff is computed exactly, and the procedure is correct.

Now, suppose thatjaj < jbj, and consider two cases. Ifjxj < jaj < jbj, thenx is computed exactly by
Lemma 39. It immediately follows thatbvirtual = b, avirtual = a, andbroundoff, aroundoff, andy are
zero.

Conversely, ifjxj � jaj, Lines 1 and 2 may be subject to rounding, sox = a + b + err(a � b),
and bvirtual = b + err(a � b) + err(x 	 a). (See Figure 6.6.) Lines 2, 3, and 5 are analogous to the
three lines of FAST-TWO-DIFF (with Line 5 negated), so Lines 3 and 5 are computed exactly. Hence,
avirtual = x� bvirtual = a� err(x	 a), andaroundoff= err(x	 a).

Becausejbj > jaj, we havejxj = ja � bj � 2jbj, so the roundoff errors err(a � b) and err(x 	 a) each
cannot be more than ulp(b), sobvirtual 2 [ b2 ; 2b] (for p � 3) and Lemma 40 can be applied to show that Line
4 is exact. Hence,broundoff = �err(a� b)� err(x	 a). Finally, Line 6 is exact because by Corollary 37,
aroundoff+ broundoff= �err(a� b) is expressible inp bits.

It follows thaty = �err(a� b) andx = a+ b+ err(a� b), hencea+ b = x+ y. �

Two-term subtraction (“TWO-DIFF”) is implemented by the sequencex ( a 	 b; bvirtual ( a 	 x;
avirtual ( x� bvirtual; broundoff( bvirtual	 b; aroundoff( a	 avirtual; y ( aroundoff� broundoff.



Arbitrary Precision Floating-Point Arithmetic 159

Corollary 43 Letx andy be the values returned byFAST-TWO-SUM or TWO-SUM.

(a) If jyj � 2i for some integeri, thenjx+ yj � 2i(2p + 1).

(b) If jyj > 2i for some integeri, thenjx+ yj > 2i(2p+1 + 1).

Proof: y is the roundoff error�err(a� b) for somea andb. By Theorems 41 and 42,a+ b = x + y. The
results follow directly from Lemma 38. �

Corollary 44 Letx andy be the values returned byFAST-TWO-SUM or TWO-SUM. On a machine whose
arithmetic uses round-to-even tiebreaking,x andy are nonadjacent.

Proof: Exact rounding guarantees thaty � 1
2ulp(x). If the inequality is strict,x andy are nonadjacent. If

y = 1
2ulp(x), the round-to-even rule ensures that the least significant bit of the significand ofx is zero, sox

andy are nonadjacent. �

6.3.4 Expansion Addition

Having established how to add twop-bit values, I turn to the topic of how to add two arbitrary precision
values expressed as expansions. Three methods are available. EXPANSION-SUM adds anm-component ex-
pansion to ann-component expansion inO(mn) time. LINEAR-EXPANSION-SUM and FAST-EXPANSION-
SUM do the same inO(m+ n) time.

Despite its asymptotic disadvantage, EXPANSION-SUM can be faster than the linear-time algorithms in
cases where the size of each expansion is small and fixed, because program loops can be completely unrolled
and indirection overhead can be eliminated (by avoiding the use of arrays). The linear-time algorithms have
conditionals that make such optimizations untenable. Hence, EXPANSION-SUM and FAST-EXPANSION-
SUM are both used in the implementations of geometric predicates described in Section 6.5.

EXPANSION-SUM and LINEAR-EXPANSION-SUM both have the property that their outputs are non-
overlapping if their inputs are nonoverlapping, and nonadjacent if their inputs are nonadjacent. FAST-
EXPANSION-SUM is faster than LINEAR-EXPANSION-SUM, performing six floating-point operations per
component rather than nine, but has three disadvantages. First, FAST-EXPANSION-SUM does not always
preserve either the nonoverlapping nor the nonadjacent property; instead, it preserves an intermediate prop-
erty, described later. Second, whereas LINEAR-EXPANSION-SUM makes no assumption about the tiebreak-
ing rule, FAST-EXPANSION-SUM is designed for machines that use round-to-even tiebreaking, and can
fail on machines with other tiebreaking rules. Third, the correctness proof for FAST-EXPANSION-SUM

is much more tedious. Nevertheless, I use FAST-EXPANSION-SUM in my geometric predicates, and rele-
gate the slower LINEAR-EXPANSION-SUM to Appendix A. Users of machines that have exact rounding
but not round-to-even tiebreaking should replace calls to FAST-EXPANSION-SUM with calls to LINEAR-
EXPANSION-SUM.

A complicating characteristic of all the algorithms for manipulating expansions is that there may be
spurious zero components scattered throughout the output expansions, even if no zeros were present in the
input expansions. For instance, if the expansions1111+0:0101 and1100+0:11 are passed as inputs to any of
the three expansion addition algorithms, the output expansion in four-bit arithmetic is11100+0+0+0:0001.
One may want to add expansions thus produced to other expansions; fortunately, all the algorithms in this
chapter cope well with spurious zero components in their input expansions. Unfortunately, accounting for
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Figure 6.7:Operation of GROW-EXPANSION. The expansions e and h are illustrated with their most signif-
icant components on the left. All TWO-SUM boxes in this chapter observe the convention that the larger
output (x) emerges from the left side of each box, and the smaller output (y) from the bottom or right. Each
Qi term is an approximate running total.

these zero components could complicate the correctness proofs significantly. To avoid confusion, most of the
proofs for the addition and scaling algorithms are written as if all input components are nonzero. Spurious
zeros can be integrated into the proofs (after the fact) by noting that the effect of a zero input component is
always to produce a zero output component without changing the value of the accumulator (denoted by the
variableQ). The effect can be likened to a pipeline delay; it will become clear in the first few proofs.

Each algorithm has an accompanying dataflow diagram, like Figure 6.7. Readers will find the proofs
easier to understand if they follow the diagrams while reading the proofs, and keep several facts in mind.
First, Lemma 36 indicates that the down arrow from any TWO-SUM box represents a number no larger than
either input to the box. (This is why a zero input component yields a zero output component.) Second,
Theorems 41 and 42 indicate that the down arrow from any TWO-SUM box represents a number too small
to overlap the number represented by the left arrow from the box.

I begin with an algorithm for adding a singlep-bit value to an expansion.

Theorem 45 Let e =
Pm

i=1 ei be a nonoverlapping expansion ofm p-bit components, and letb be ap-bit
value wherep � 3. Suppose that the componentse1; e2; : : : ; em are sorted in order ofincreasingmagnitude,
except that any of theei may be zero. Then the following algorithm will produce a nonoverlapping expansion
h such thath =

Pm+1
i=1 hi = e+ b, where the componentsh1; h2; : : : ; hm+1 are also in order of increasing

magnitude, except that any of thehi may be zero. Furthermore, ife is nonadjacent and round-to-even
tiebreaking is used, thenh is nonadjacent.

GROW-EXPANSION(e; b)
1 Q0 ( b
2 for i( 1 to m
3 (Qi; hi)( TWO-SUM(Qi�1; ei)
4 hm+1 ( Qm

5 return h

Qi is an approximate sum ofb and the firsti components ofe; see Figure 6.7. In an implementation, the
arrayQ can be collapsed into a single scalar.
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Proof: At the end of each iteration of thefor loop, the invariantQi +
Pi

j=1 hj = b +
Pi

j=1 ej holds.
Certainly this invariant holds fori = 0 after Line 1 is executed. From Line 3 and Theorem 42, we have that
Qi + hi = Qi�1 + ei; from this one can deduce inductively that the invariant holds for all (relevant values
of) i. Thus, after Line 4 is executed,

Pm+1
j=1 hj =

Pm
j=1 ej + b.

For all i, the output of TWO-SUM (in Line 3) has the property thathi andQi do not overlap. By
Lemma 36,jhij � jeij, and becausee is a nonoverlapping expansion whose nonzero components are ar-
ranged in increasing order,hi cannot overlap any ofei+1; ei+2; : : :. It follows thathi cannot overlap any of
the later components ofh, because these are constructed by summingQi with latere components. Hence,
h is nonoverlapping and increasing (excepting zero components ofh). If round-to-even tiebreaking is used,
thenhi andQi are nonadjacent for alli (by Corollary 44), so ife is nonadjacent, thenh is nonadjacent.

If any of theei is zero, the corresponding output componenthi is also zero, and the accumulator valueQ
is unchanged (Qi = Qi�1). (For instance, consider Figure 6.7, and suppose thate3 is zero. The accumulator
valueQ2 shifts through the pipeline to becomeQ3, and a zero is harmlessly output ash3. The same effect
occurs in several algorithms in this chapter.) �

Corollary 46 The firstm components ofh are each no larger than the corresponding component ofe. (That
is, jh1j � je1j; jh2j � je2j; : : : ; jhmj � jemj.) Furthermore,jh1j � jbj.

Proof: Follows immediately by application of Lemma 36 to Line 3. (Both of these facts are apparent in
Figure 6.7. Recall that the down arrow from any TWO-SUM box represents a number no larger than either
input to the box.) �

If e is a long expansion, two optimizations might be advantageous. The first is to use a binary search
to find the smallest component ofe greater than or equal to ulp(b), and start there. A variant of this idea,
without the search, is used in the next theorem. The second optimization is to stop early if the output of a
TWO-SUM operation is the same as its inputs; the expansion is already nonoverlapping.

A naı̈ve way to add one expansion to another is to repeatedly use GROW-EXPANSION to add each
component of one expansion to the other. One can improve this idea with a small modification.

Theorem 47 Let e =
Pm

i=1 ei and f =
Pn

i=1 fi be nonoverlapping expansions ofm and n p-bit com-
ponents, respectively, wherep � 3. Suppose that the components of bothe and f are sorted in order of
increasing magnitude, except that any of theei or fi may be zero. Then the following algorithm will produce
a nonoverlapping expansionh such thath =

Pm+n
i=1 hi = e+ f , where the components ofh are in order of

increasing magnitude, except that any of thehi may be zero. Furthermore, ife andf are nonadjacent and
round-to-even tiebreaking is used, thenh is nonadjacent.

EXPANSION-SUM(e; f)
1 h( e
2 for i( 1 to n
3 hhi; hi+1; : : : ; hi+mi ( GROW-EXPANSION(hhi; hi+1; : : : ; hi+m�1i; fi)
4 return h

Proof: That
Pm+n

i=1 hi =
Pm

i=1 ei +
Pn

i=1 fi upon completion can be proven by induction on Line 3.

After settingh ( e, EXPANSION-SUM traverses the expansionf from smallest to largest component,
individually adding these components toh using GROW-EXPANSION (see Figure 6.8). The theorem would
follow directly from Theorem 45 if each componentfi were added to the whole expansionh, but to save
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Figure 6.8:Operation of EXPANSION-SUM.

time, only the subexpansionhhi; hi+1; : : : ; hi+m�1i is considered. (In Figure 6.8, this optimization saves
three TWO-SUM operations that would otherwise appear in the lower right corner of the figure.)

Whenfi is considered, the componentsf1; f2; : : : ; fi�1 have already been summed intoh. According to
Corollary 46,jhj j � jfjj after iterationj of Line 3. Becausef is an increasing nonoverlapping expansion,
for anyj < i, hj cannot overlapfi, and furthermorejhj j < jfij (unlessfi = 0). Therefore, when one sums
fi into h, one can skip the firsti� 1 components ofh without sacrificing the nonoverlapping and increasing
properties ofh. Similarly, if e andf are each nonadjacent, one can skip the firsti � 1 components ofh
without sacrificing the nonadjacent property ofh.

No difficulty ensues iffi is a spurious zero component, because zero does not overlap any number.
GROW-EXPANSION will deposit a zero athi and continue normally. �

Unlike EXPANSION-SUM, FAST-EXPANSION-SUM does not preserve the nonoverlapping or nonadja-
cent properties, but it is guaranteed to produce a strongly nonoverlapping output if its inputs are strongly
nonoverlapping. An expansion isstrongly nonoverlappingif no two of its components are overlapping, no
component is adjacent to two other components, and any pair of adjacent components have the property
that both components can be expressed with a one-bit significand (that is, both are powers of two). For
instance,11000 + 11 and10000 + 1000 + 10 + 1 are both strongly nonoverlapping, but11100 + 11 is
not, nor is100 + 10 + 1. A characteristic of this property is that a zero bit must occur in the expansion at
least once everyp+ 1 bits. For instance, in four-bit arithmetic, a strongly nonoverlapping expansion whose
largest component is1111 can be no greater than1111:01111011110 : : :. Any nonadjacent expansion is
strongly nonoverlapping, and any strongly nonoverlapping expansion is nonoverlapping, but the converse
implications do not apply. Recall that any floating-point value has a nonadjacent expansion; hence, any
floating-point value has a strongly nonoverlapping expansion. For example,1111:1 may be expressed as
10000 +�0:1.
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Figure 6.9:Operation of FAST-EXPANSION-SUM. The Qi terms maintain an approximate running total.

Under the assumption that all expansions are strongly nonoverlapping, it is possible to prove the first
key result of this chapter: the FAST-EXPANSION-SUM algorithm defined below behaves correctly under
round-to-even tiebreaking. The algorithm can also be used with round-toward-zero arithmetic, but the proof
is different. I have emphasized round-to-even arithmetic here due to the IEEE 754 standard.

A variant of this algorithm was presented by Priest [76], but it is used differently here. Priest uses the
algorithm to sum two nonoverlapping expansions, and proves under general conditions that the components
of the resulting expansion overlap by at most one digit (i.e. one bit in binary arithmetic). An expensive
renormalization step is required afterward to remove the overlap. Here, by contrast, the algorithm is used
to sum two strongly nonoverlapping expansions, and the result is also a strongly nonoverlapping expansion.
Not surprisingly, the proof demands more stringent conditions than Priest requires: binary arithmetic with
exact rounding and round-to-even tiebreaking, consonant with the IEEE 754 standard. No renormalization
is needed.

Theorem 48 Let e =
Pm

i=1 ei andf =
Pn

i=1 fi be strongly nonoverlapping expansions ofm andn p-bit
components, respectively, wherep � 4. Suppose that the components of bothe andf are sorted in order of
increasing magnitude, except that any of theei or fi may be zero. On a machine whose arithmetic uses the
round-to-even rule, the following algorithm will produce a strongly nonoverlapping expansionh such that
h =

Pm+n
i=1 hi = e + f , where the components ofh are also in order of increasing magnitude, except that

any of thehi may be zero.

FAST-EXPANSION-SUM(e; f)
1 Mergee andf into a single sequenceg, in order of

nondecreasing magnitude (possibly with interspersed zeros)
2 (Q2; h1)( FAST-TWO-SUM(g2; g1)
3 for i( 3 to m+ n
4 (Qi; hi�1)( TWO-SUM(Qi�1; gi)
5 hm+n ( Qm+n

6 return h

Qi is an approximate sum of the firsti components ofg; see Figure 6.9.

Several lemmata will aid the proof of Theorem 48. I begin with a proof that the sum itself is correct.
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Lemma 49 (Q Invariant) At the end of each iteration of thefor loop, the invariantQi +
Pi�1

j=1 hj =Pi
j=1 gj holds. This assures us that after Line 5 is executed,

Pm+n
j=1 hj =

Pm+n
j=1 gj , so the algorithm

produces a correct sum.

Proof: The invariant clearly holds fori = 2 after Line 2 is executed. For larger values ofi, Line 4 ensures
thatQi + hi�1 = Qi�1 + gi; the invariant follows by induction. �

Lemma 50 Let bg =
Pk

j=1 bgj be a series formed by merging two strongly nonoverlapping expansions, or a
subseries thereof. Suppose thatbgk is the largest component and has a nonzero bit of magnitude2i or smaller
for some integeri. ThenjPk

j=1 bgj j < 2i(2p+1 � 1), andjPk�1
j=1 bgj j < 2i(2p).

Proof: Let be and bf be the expansions (or subsequences thereof) from whichbg was formed, and assume that
the componentbgk comes from the expansionbe. Becausebgk is the largest component ofbe and has a nonzero
bit of magnitude2i or smaller, and becausebe is strongly nonoverlapping,jbej is less than2i(2p � 1

2). (For
instance, ifp = 4 andi = 0, thenjbej � 1111:0111101111 : : :.) The same bound applies to the expansionbf ,
so jbgj = jbe+ bf j < 2i(2p+1 � 1).

If we omit bgk from the sum, there are two cases to consider. Ifbgk = 2i, thenjbe � bgkj is less than2i,
andj bf j is less than2i(2). (For instance, ifp = 4, i = 0, andbgk = 1, thenjbe � bgkj � 0:10111101111 : : :,
and j bf j � 1:10111101111 : : :.) Conversely, ifbgk 6= 2i, then jbe � bgkj is less than2i(12), and j bf j is less
than2i(2p � 1

2). (For instance, ifp = 4, i = 0, andbgk = 1111, thenjbe � bgkj � 0:0111101111 : : :, and
j bf j � 1111:0111101111 : : :.) In either case,jbg � bgkj = jbe� bgk + bf j < 2i(2p). �

Lemma 51 The expansionh produced byFAST-EXPANSION-SUM is a nonoverlapping expansion whose
components are in order of increasing magnitude (excepting zeros).

Proof: Suppose for the sake of contradiction that two successive nonzero components ofh overlap or occur
in order of decreasing magnitude. Denote the first such pair produced6 hi�1 andhi; then the components
h1; : : : ; hi�1 are nonoverlapping and increasing (excepting zeros).

Assume without loss of generality that the exponent ofhi�1 is zero, so thathi�1 is of the form�1:�,
where an asterisk represents a sequence of arbitrary bits.

Qi andhi�1 are produced by a TWO-SUM or FAST-TWO-SUM operation, and are therefore nonadjacent
by Corollary 44 (because the round-to-even rule is used).Qi is therefore of the form� � 00 (having no bits
of magnitude smaller than four). Becausejhi�1j � 1, Corollary 43(a) guarantees that

jQi + hi�1j � 2p + 1: (6.1)

Because the offending componentshi�1 andhi are nonzero and either overlapping or of decreasing
magnitude, there must be at least one nonzero bit in the significand ofhi whose magnitude is no greater
than one. One may ask, where does this offending bit come from?hi is computed by Line 4 fromQi and
gi+1, and the offending bit cannot come fromQi (which is of the form� � 00), so it must have come from
gi+1. Hence,jgi+1j has a nonzero bit of magnitude one or smaller. Applying Lemma 50, one finds that
jPi

j=1 gj j < 2p.

6It is implicitly assumed here that the first offending pair is not separated by intervening zeros. The proof could be written to
consider the case where intervening zeros appear, but this would make it even more convoluted. Trust me.



Arbitrary Precision Floating-Point Arithmetic 165

jPi
j=1 gij

� jPj0 ej0 j � gi+1 : 0 1 1 1 1 0 1 1 1 1 0 1 1

jPj00 fj00 j � 1 1 1 1: 0 1 1 1 1 0 1 1 1 1 0 1 1

jPi�2
j=1 hj j � 0: 1 1 1 1 1 1 1 1 1 1 1 1 1

jQi + hi�1j � 1 0 0 0 0: 1 1 1 1 0 1 1 1 1 0 1 0 1

Figure 6.10:Demonstration (for p = 4) of how the Q Invariant is used in the proof that h is nonoverlapping.
The top two values, e and f , are being summed to form h. Because gi+1 has a nonzero bit of magnitude
no greater than 1, and because g is formed by merging two strongly nonoverlapping expansions, the sum
jPi

j=1 gij+ j
Pi�2

j=1 hj j can be no larger than illustrated in this worst-case example. As a result, jQi + hi�1j
cannot be large enough to have a roundoff error of 1, so jhi�1j is smaller than 1 and cannot overlap gi+1.
(Note that gi+1 is not part of the sum; it appears above in a box drawn as a placeholder that bounds the
value of each expansion.)

A bound for
Pi�2

j=1 hj can be derived by recalling thathi�1 is of the form�1:�, andh1; : : : ; hi�1 are

nonoverlapping and increasing. Hence,jPi�2
j=1 hj j < 1.

Rewrite the Q Invariant in the formQi + hi�1 =
Pi

j=1 gj �
Pi�2

j=1 hj . Using the bounds derived above,
we obtain

jQi + hi�1j < 2p + 1: (6.2)

See Figure 6.10 for a concrete example.

Inequalities 6.1 and 6.2 cannot hold simultaneously. The result follows by contradiction. �

Proof of Theorem 48: Lemma 49 ensures thath = e + f . Lemma 51 eliminates the possibility that the
components ofh overlap or fail to occur in order of increasing magnitude; it remains only to prove thath is
strongly nonoverlapping. Suppose that two successive nonzero componentshi�1 andhi are adjacent.

Assume without loss of generality that the exponent ofhi�1 is zero, so thathi�1 is of the form�1:�.
As in the proof of Lemma 51,Qi must have the form� � 00.

Becausehi�1 andhi are adjacent, the least significant nonzero bit ofhi has magnitude two; that is,hi is
of the form�� 10. Again we ask, where does this bit come from? As before, this bit cannot come fromQi,
so it must have come fromgi+1. Hence,jgi+1j has a nonzero bit of magnitude two. Applying Lemma 50,
we find thatjPi+1

j=1 gj j < 2p+2 � 2 andjPi
j=1 gj j < 2p+1.

Bounds for
Pi�1

j=1 hj and
Pi�2

j=1 hj can also be derived by recalling thathi�1 is of the form�1:� and is

the largest component of a nonoverlapping expansion. Hence,jPi�1
j=1 hj j < 2, andjPi�2

j=1 hj j < 1.

Rewriting the Q Invariant in the formQi+1 + hi =
Pi+1

j=1 gj �
Pi�1

j=1 hj , we obtain

jQi+1 + hij < 2p+2: (6.3)

The Q Invariant also gives us the identityQi + hi�1 =
Pi

j=1 gj �
Pi�2

j=1 hj. Hence,

jQi + hi�1j < 2p+1 + 1: (6.4)

Recall that the valuejhij is at least2. Consider the possibility thatjhij might be greater than2; by
Corollary 43(b), this can occur only ifjQi+1 + hij > 2p+2 + 2, contradicting Inequality 6.3. Hence,jhij
must be exactly2, and is expressible in one bit. (Figure 6.11 gives an example where this occurs.)
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Figure 6.11:A four-bit example where FAST-EXPANSION-SUM generates two adjacent components h2 and
h3. The figure permits me a stab at explaining the (admittedly thin) intuition behind Theorem 48: suppose
h2 is of the form �1:�. Because h2 is the roundoff term associated with Q3, Q3 must be of the form �00 if
round-to-even arithmetic is used. Hence, the bit of magnitude 2 in h3 must have come from e2. This implies
that je2j is no larger than 11110, which imposes bounds on how large jQ3j and jQ4j can be (Lemma 50);
these bounds in turn imply that jh2j can be no larger than 1, and jh3j can be no larger than 10. Furthermore,
h4 cannot be adjacent to h3 because neither Q4 nor f3 can have a bit of magnitude 4.

Similarly, the valuejhi�1j is at least1. Consider the possibility thatjhi�1j might be greater than1; by
Corollary 43(b), this can occur only ifjQi + hi�1j > 2p+1 + 1, contradicting Inequality 6.4. Hence,jhi�1j
must be exactly1, and is expressible in one bit.

By Corollary 43(a),jQi + hi�1j � 2p + 1 (becausejhi�1j = 1). Using this inequality, the inequality
jPi�2

j=1 hj j < 1, and the Q Invariant, one can deduce thatjPi
j=1 gj j > 2p. Becauseg is formed from two

nonoverlapping increasing expansions, this inequality implies thatjgij � 2p�2 � 100 binary (recalling that
p � 4), and hencegi+2; gi+3; : : : must all be of the form� � 000 (having no bits of magnitude smaller than
8). Qi+1 is also of the form��000, becauseQi+1 andhi are produced by a TWO-SUM or FAST-TWO-SUM

operation, and are therefore nonadjacent by Corollary 44 (assuming the round-to-even rule is used).

BecauseQi+1 and gi+2; gi+3; : : : are of the form� � 000, hi+1; hi+2; : : : must be as well, and are
therefore not adjacent tohi. It follows thath cannot contain three consecutive adjacent components.

These arguments prove that if two components ofh are adjacent, both are expressible in one bit, and no
other components are adjacent to them. Hence,h is strongly nonoverlapping. �

The proof of Theorem 48 is more complex than one would like. It is unfortunate that the proof requires
strongly nonoverlapping expansions; it would be more parsimonious if FAST-EXPANSION-SUM produced
nonoverlapping output from nonoverlapping input, or nonadjacent output from nonadjacent input. Unfortu-
nately, it does neither. For a counterexample to the former possibility, consider adding the nonoverlapping
expansion11110000+1111+0:1111 to itself in four-bit arithmetic. (This example produces an overlapping
expansion if one uses the round-to-even rule, but not if one uses the round-toward-zero rule.) For a coun-
terexample to the latter possibility, see Figure 6.11. On a personal note, it took me quite a bit of effort to find
a property between nonoverlapping and nonadjacent that is preserved by FAST-EXPANSION-SUM. Several
conjectures were laboriously examined and discarded before I converged on the strongly nonoverlapping
property. I persisted only because the algorithm consistently works in practice.
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It is also unfortunate that the proof requires explicit consideration of the tiebreaking rule. FAST-
EXPANSION-SUM works just as well on a machine that uses the round-toward-zero rule. The conditions
under which it works are also simpler—the output expansion is guaranteed to be nonoverlapping if the in-
put expansions are. One might hope to prove that FAST-EXPANSION-SUM works regardless of rounding
mode, but this is not possible. Appendix B demonstrates the difficulty with an example of how mixing
round-toward-zero and round-to-even arithmetic can lead to the creation of overlapping expansions.

The algorithms EXPANSION-SUM and FAST-EXPANSION-SUM can be mixed only to a limited degree.
EXPANSION-SUM preserves the nonoverlapping and nonadjacent properties, but not the strongly nonover-
lapping property; FAST-EXPANSION-SUM preserves only the strongly nonoverlapping property. Because
nonadjacent expansions are strongly nonoverlapping, and strongly nonoverlapping expansions are nonover-
lapping, expansions produced exclusively by one of the two algorithms can be fed as input to the other, but it
may be dangerous to repeatedly switch back and forth between the two algorithms. In practice, EXPANSION-
SUM is only preferred for producing small expansions, which are nonadjacent and hence suitable as input
to FAST-EXPANSION-SUM.

It is useful to consider the operation counts of the algorithms. EXPANSION-SUM usesmn TWO-SUM

operations, for a total of6mn flops (floating-point operations). FAST-EXPANSION-SUM usesm + n � 2
TWO-SUM operations and one FAST-TWO-SUM operation, for a total of6m+ 6n� 9 flops. However, the
merge step of FAST-EXPANSION-SUM requiresm+n�1 comparison operations of the form “if jeij > jfj j”.
Empirically, each such comparison seems to take roughly as long as three flops; hence, a rough measure is
to estimate that FAST-EXPANSION-SUM takes as long to execute as9m+ 9n� 12 flops.

These estimates correlate well with the measured performance of the algorithms. I implemented each
procedure as a function call whose parameters are variable-length expansions stored as arrays, and measured
them on a DEC Alpha-based workstation using the bundled compiler with optimization level 3. By plotting
their performance over a variety of expansion sizes and fitting curves, I found that EXPANSION-SUM runs
in 0:83(m + n) � 0:7 microseconds, and FAST-EXPANSION-SUM runs in0:54mn + 0:6 microseconds.
FAST-EXPANSION-SUM is always faster except when one of the expansions has only one component, in
which case GROW-EXPANSION should be used.

As I have mentioned, however, the balance shifts when expansion lengths are small and fixed. By storing
small, fixed-length expansions as scalar variables rather than arrays, one can unroll the loops in EXPANSION-
SUM, remove array indexing overhead, and allow components to be allocated to registers by the compiler.
Thus, EXPANSION-SUM is attractive in this special case, and is used to advantage in my implementation of
the geometric predicates of Section 6.5. Note that FAST-EXPANSION-SUM is difficult to unroll because of
the conditionals in its initial merging step.

On the other hand, the use of arrays to store expansions (and non-unrolled loops to manage them) con-
fers the advantage that spurious zero components can easily be eliminated from output expansions. In the
procedures GROW-EXPANSION, EXPANSION-SUM, and FAST-EXPANSION-SUM, as well as the procedures
SCALE-EXPANSION and COMPRESSin the sections to come,zero eliminationcan be achieved by maintain-
ing a separate index for the output arrayh and advancing this index only when the procedure produces a
nonzero component ofh. In practice, versions of these algorithms that eliminate zeros are almost always
preferable to versions that don’t (except when loop unrolling confers a greater advantage). Zero elimination
adds a small amount of overhead for testing and indexing, but the lost time is virtually always regained when
further operations are performed on the resulting shortened expansions.

Experience suggests that it is economical to use unrolled versions of EXPANSION-SUM to form expan-
sions of up to about four components, tolerating interspersed zeros, and to use FAST-EXPANSION-SUM with
zero elimination when forming (potentially) larger expansions.
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6.3.5 Simple Multiplication

The basic multiplication algorithm computes a nonoverlapping expansion equal to the product of twop-bit
values. The multiplication is performed by splitting each value into two halves with half the precision, then
performing four exact multiplications on these fragments. The trick is to find a way to split a floating-point
value in two. The following theorem was first proven by Dekker [26]:

Theorem 52 Let a be ap-bit floating-point number, wherep � 3. Choose asplitting points such that
p
2 � s � p � 1. Then the following algorithm will produce a(p � s)-bit valueahi and a nonoverlapping
(s� 1)-bit valuealo such thatjahij � jaloj anda = ahi + alo.

SPLIT(a; s)
1 c( (2s + 1)
 a
2 abig ( c	 a

3 ahi ( c	 abig
4 alo ( a	 ahi
5 return (ahi; alo)

The claim may seem absurd. After all,ahi andalo have onlyp � 1 bits of significand between them;
how can they carry all the information of ap-bit significand? The secret is hidden in the sign bit ofalo.
For instance, the seven-bit number1001001 can be split into the three-bit terms1010000 and�111. This
property is fortunate, because even ifp is odd, as it is in IEEE 754 double precision arithmetic,a can be
split into twobp2c-bit values.

Proof: Line 1 is equivalent to computing2sa � a. (Clearly,2sa can be expressed exactly, because multi-
plying a value by a power of two only changes its exponent, and does not change its significand.) Line 1 is
subject to rounding, so we havec = 2sa+ a+ err(2sa� a).

Line 2 is also subject to rounding, soabig = 2sa+ err(2sa� a) + err(c	 a). It will become apparent
shortly that the proof relies on showing that the exponent ofabig is no greater than the exponent of2sa.

Both jerr(2sa�a)j andjerr(c	a)j are bounded by12ulp(c), so the exponent ofabig can only be larger than
that of2sa if every bit of the significand ofa is nonzero except possibly the last (in four-bit arithmetic,a
must have significand1110 or 1111). By manually checking the behavior of SPLIT in these two cases, one
can verify that the exponent ofabig is never larger than that of2sa.

The reason this fact is useful is because, with Line 2, it implies thatjerr(c	a)j � 1
2ulp(2sa), and so the

error term err(c	 a) is expressible ins� 1 bits (for s � 2).

By Lemma 40, Lines 3 and 4 are calculated exactly. It follows thatahi = a � err(c 	 a), andalo =
err(c	 a); the latter is expressible ins� 1 bits. To show thatahi is expressible inp� s bits, consider that
its least significant bit cannot be smaller than ulp(abig) = 2sulp(a). If ahi has the same exponent asa,
thenahi must be expressible inp � s bits; alternatively, ifahi has an exponent one greater than that ofa
(becausea� err(c	 a) has a larger exponent thana), thenahi is expressible in one bit (as demonstrated in
Figure 6.12).

Finally, the exactness of Line 4 implies thata = ahi + alo as required. �

Multiplication is performed by settings = dp2e, so that thep-bit operandsa andb are each split into
two bp2c-bit pieces,ahi, alo, bhi, andblo. The productsahibhi, alobhi, ahiblo, andaloblo can each be
computed exactly by the floating-point unit, producing four values. These could then be summed using the
FAST-EXPANSION-SUM procedure in Section 6.3.4. However, Dekker [26] provides several faster ways to
accomplish the computation. Dekker attributes the following method to G. W. Veltkamp.
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a = 1 1 1 0 1
23a = 1 1 1 0 1 �23

c = (23 + 1)
 a = 1 0 0 0 0 �24

a = 1 1 1 0 1
abig = c	 a = 1 1 1 0 0 �23

ahi = c	 abig = 1 0 0 0 0 �21

alo = a	 ahi = � 1 1

Figure 6.12:Demonstration of SPLIT splitting a five-bit number into two two-bit numbers.

a = 1 1 1 0 1 1
b = 1 1 1 0 1 1
x = a
 b = 1 1 0 1 1 0 �26

ahi 
 bhi = 1 1 0 0 0 1 �26

err1 = x	 (ahi 
 bhi) = 1 0 1 0 0 0 �23

alo 
 bhi = 1 0 1 0 1 0 �22

err2 = err1 	 (alo 
 bhi) = 1 0 0 1 1 0 �22

ahi 
 blo = 1 0 1 0 1 0 �22

err3 = err2 	 (ahi 
 blo) = � 1 0 0 0 0
alo 
 blo = 1 0 0 1

�y = err3 	 (alo 
 blo) = � 1 1 0 0 1

Figure 6.13:Demonstration of TWO-PRODUCT in six-bit arithmetic where a = b = 111011, ahi = bhi =
111000, and alo = blo = 11. Note that each intermediate result is expressible in six bits. The resulting
expansion is 110110� 26 + 11001.

Theorem 53 Let a andb bep-bit floating-point numbers, wherep � 6. Then the following algorithm will
produce a nonoverlapping expansionx + y such thatab = x + y, wherex is an approximation toab and
y represents the roundoff error in the calculation ofx. Furthermore, if round-to-even tiebreaking is used,x
andy are nonadjacent. (See Figure 6.13.)

TWO-PRODUCT(a; b)
1 x( a
 b
2 (ahi; alo) = SPLIT(a; dp2e)
3 (bhi; blo) = SPLIT(b; dp2e)
4 err1 ( x	 (ahi 
 bhi)
5 err2 ( err1 	 (alo 
 bhi)
6 err3 ( err2 	 (ahi 
 blo)
7 y ( (alo 
 blo)	 err3
8 return (x; y)
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Proof: Line 1 is subject to rounding, so we havex = ab+err(a
b). The multiplications in Lines 4 through
7 are all exact, because each factor has no more thanbp2c bits; it will be proven that each of the subtractions
is also exact, and thusy = �err(a
 b).

Without loss of generality, assume that the exponents ofa andb arep� 1, so thatjaj andjbj are integers
in the range[2p�1; 2p�1]. In the proof of Theorem 52 it emerged thatjahij andjbhij are integers in the range
[2p�1; 2p], andjaloj andjbloj are integers in the range[0; 2dp=2e�1]. From these ranges and the assumption
that p � 6, one can derive the inequalitiesjaloj � 1

8 jahij, jbloj � 1
8 jbhij, and err(a 
 b) � 2p�1 �

1
32 jahibhij.

Intuitively, ahibhi ought to be within a factor of two ofa 
 b, so that Line 4 is computed exactly (by
Lemma 40). To confirm this hunch, note thatx = ab+ err(a
 b) = ahibhi + alobhi + ahiblo + aloblo +
err(a
 b) = ahibhi � 19

64 jahibhij (using the inequalities stated above), which justifies the use of Lemma 40.
Because Line 4 is computed without roundoff,err1 = alobhi + ahiblo + aloblo + err(a
 b).

We are assured that Line 5 is executed without roundoff error if the valueerr1 � alobhi = ahiblo +
aloblo + err(a 
 b) is expressible inp bits. I prove that this property holds by showing that the left-hand
expression is a multiple of2dp=2e, and the right-hand expression is strictly smaller than2d3p=2e.

The upper bound on the absolute value of the right-hand expression follows immediately from the upper
bounds forahi, alo, blo, and err(a 
 b). To show that the left-hand expression is a multiple of2dp=2e,
consider thaterr1 must be a multiple of2p�1 becausea 
 b andahibhi have exponents of at least2p � 2.
Hence,err1 � alobhi must be a multiple of2dp=2e becausealo is an integer, andbhi is a multiple of2dp=2e.
Hence, Line 5 is computed exactly, anderr2 = ahiblo + aloblo + err(a
 b).

To show that Line 6 is computed without roundoff error, note thataloblo is an integer no greater than
2p�1 (becausealo andblo are integers no greater than2dp=2e�1), and err(a
 b) is an integer no greater than
2p�1. Thus,err3 = aloblo + err(a
 b) is an integer no greater than2p, and is expressible inp bits.

Finally, Line 7 is exact simply becausey = �err(a
 b) can be expressed inp bits. Hence,ab = x+ y.

If round-to-even tiebreaking is used,x andy are nonadjacent by analogy to Corollary 44. �

6.3.6 Expansion Scaling

The following algorithm, which multiplies an expansion by a floating-point value, is the second key new
result of this chapter.

Theorem 54 Let e =
Pm

i=1 ei be a nonoverlapping expansion ofm p-bit components, and letb be ap-bit
value wherep � 4. Suppose that the components ofe are sorted in order of increasing magnitude, except
that any of theei may be zero. Then the following algorithm will produce a nonoverlapping expansionh
such thath =

P2m
i=1 hi = be, where the components ofh are also in order of increasing magnitude, except

that any of thehi may be zero. Furthermore, ife is nonadjacent and round-to-even tiebreaking is used, then
h is nonadjacent.
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Figure 6.14:Operation of SCALE-EXPANSION.

SCALE-EXPANSION(e; b)
1 (Q2; h1) ( TWO-PRODUCT(e1 ; b)
2 for i( 2 to m
3 (Ti; ti)( TWO-PRODUCT(ei; b)
4 (Q2i�1; h2i�2)( TWO-SUM(Q2i�2; ti)
5 (Q2i; h2i�1)( FAST-TWO-SUM(Ti ; Q2i�1)
6 h2m ( Q2m

7 return h

As illustrated in Figure 6.14, SCALE-EXPANSION multiplies each component ofe by b and sums the
results. It should be apparent why the final expansionh is the desired product, but it is not so obvious why
the components ofh are guaranteed to be nonoverlapping and in increasing order. Two lemmata will aid the
proof.

Lemma 55 Let ei andej be two nonoverlapping nonzero components ofe, with i < j and jeij < jej j. Let
Ti be a correctly rounded approximation toeib, and letTi+ ti be a two-component expansion exactly equal
to eib. (Such an expansion is produced by Line 3, but here is defined also fori = 1.) Thenti is too small
in magnitude to overlap the double-width productejb. Furthermore, ifei andej are nonadjacent, thenti is
not adjacent toejb.

Proof: By scalinge andb by appropriate powers of2 (thereby shifting their exponents without changing
their significands), one may assume without loss of generality thatej andb are integers with magnitude less
than2p, and thatjeij < 1 (and hence a radix point falls betweenej andei).

It follows thatejb is an integer, andjeibj < 2p. The latter fact and exact rounding imply thatjtij � 1
2 .

Hence,ejb andti do not overlap.

If ei andej are nonadjacent, scalee so thatej is an integer andjeij < 1
2 . Thenjtij � 1

4 , soejb andti
are not adjacent. �

Lemma 56 For somei, let r be the smallest integer such thatjeij < 2r (henceei does not overlap2r). Then
jQ2ij � 2rjbj, and thusjh2i�1j � 2r�1ulp(b).
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Proof: The inequalityjQ2ij � 2rjbj holds for i = 1 after Line 1 is executed even ifQ2 is rounded to a
larger magnitude, becauseje1bj < 2rjbj, and2rjbj is expressible inp bits. For larger values ofi, the bound
is proven by induction. Assume thatR is the smallest integer such thatjei�1j < 2R; by the inductive
hypothesis,jQ2i�2j � 2Rjbj.

Becauseei andei�1 are nonoverlapping,ei must be a multiple of2R. Suppose thatr is the smallest
integer such thatjeij < 2r; thenjeij � 2r � 2R.

Lines 3, 4, and 5 computeQ2i, an approximation ofQ2i�2 + eib, and are subject to roundoff error in
Lines 4 and 5. Suppose thatQ2i�2 andeib have the same sign, thatjQ2i�2j has its largest possible value
2Rjbj, and thatjeij has its largest possible value2r � 2R. For these assignments, roundoff does not occur in
Lines 4 and 5, andjQ2ij = jQ2i�2 + eibj = 2rjbj. Otherwise, roundoff may occur, but the monotonicity of
floating-point multiplication and addition ensures thatjQ2ij cannot be larger than2rjbj.

The inequalityjh2i�1j � 2r�1ulp(b) is guaranteed by exact rounding becauseh2i�1 is the roundoff term
associated with the computation ofQ2i in Line 5. �

Proof of Theorem 54: One can prove inductively that at the end of each iteration of thefor loop, the
invariantQ2i +

P2i�1
j=1 hj =

Pi
j=1 ejb holds. Certainly this invariant holds fori = 1 after Line 1 is

executed. By induction on Lines 3, 4, and 5, one can deduce that the invariant holds for all (relevant values
of) i. (The use of FAST-TWO-SUM in Line 5 will be justified shortly.) Thus, after Line 6 is executed,P2m

j=1 hj = b
Pm

j=1 ej .

I shall prove that the components ofh are nonoverlapping by showing that each time a component of
h is written, that component is smaller than and does not overlap either the accumulatorQ nor any of the
remaining products (ejb); hence, the component cannot overlap any portion of their sum. The first claim,
that each componenthj does not overlap the accumulatorQj+1, is true becausehj is the roundoff error
incurred while computingQj+1.

To show that each component ofh is smaller than and does not overlap the remaining products, I shall
considerh1, the remaining odd components ofh, and the even components ofh separately. The component
h1, computed by Line 1, does not overlap the remaining products (e2b; e3b; : : :) by virtue of Lemma 55.
The even components, which are computed by Line 4, do not overlap the remaining products because, by
application of Lemma 36 to Line 4, a componentjh2i�2j is no larger thanjtij, which is bounded in turn by
Lemma 55.

Odd components ofh, computed by Line 5, do not overlap the remaining products by virtue of Lemma
56, which guarantees thatjh2i�1j � 2r�1ulp(b). The remaining products are all multiples of2rulp(b)
(because the remaining components ofe are multiples of2r).

If round-to-even tiebreaking is used, the output of each TWO-SUM, FAST-TWO-SUM, and TWO-PRO-
DUCT statement is nonadjacent. Ife is nonadjacent as well, the arguments above are easily modified to show
thath is nonadjacent.

The use of FAST-TWO-SUM in Line 5 is justified becausejTij � jQ2i�1j (except ifTi = 0, in which
case FAST-TWO-SUM still works correctly). To see this, recall thatei is a multiple of2R (with R defined
as in Lemma 56), and consider two cases: ifjeij = 2R, thenTi is computed exactly andti = 0, so
jTij = 2Rjbj � jQ2i�2j = jQ2i�1j. If jeij is larger than2R, it is at least twice as large, and henceTi is at
least2jQ2i�2j, so even if roundoff occurs andti is not zero,jTij > jQ2i�2j+ jtij � jQ2i�1j.

Note that if an input componentei is zero, then two zero output components are produced, and the
accumulator value is unchanged (Q2i = Q2i�2). �

The following corollary demonstrates that SCALE-EXPANSION is compatible with FAST-EXPANSION-
SUM.
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Figure 6.15:An adjacent pair of one-bit components in a strongly nonoverlapping input expansion may
cause SCALE-EXPANSION to produce an adjacent pair of one-bit components in the output expansion.

Corollary 57 If e is strongly nonoverlapping and round-to-even tiebreaking is used, thenh is strongly
nonoverlapping.

Proof: Becausee is nonoverlapping,h is nonoverlapping by Theorem 54. We have also seen that ife
is nonadjacent, thenh is nonadjacent and hence strongly nonoverlapping; bute is only guaranteed to be
strongly nonoverlapping, and may deviate from nonadjacency.

Suppose two successive componentsei andei+1 are adjacent. By the definition of strongly nonoverlap-
ping,ei andei+1 are both powers of two and are not adjacent toei�1 or ei+2. Let s be the integer satisfying
ei = 2s and ei+1 = 2s+1. For these components the multiplication of Line 3 is exact, soTi = 2sb,
Ti+1 = 2s+1b, andti = ti+1 = 0. Applying Lemma 36 to Line 4,h2i�2 = h2i = 0. However, the compo-
nentsh2i�1 andh2i+1 may cause difficulty (see Figure 6.15). We knowh is nonoverlapping, but can these
two components be adjacent to their neighbors or each other?

The arguments used in Theorem 54 to prove thath is nonadjacent, ife is nonadjacent and round-to-
even tiebreaking is used, can be applied here as well to show thath2i�1 andh2i+1 are not adjacent to any
components ofh produced before or after them, but they may be adjacent to each other. Assume thath2i�1

andh2i+1 are adjacent (they cannot be overlapping).

h2i+1 is computed in Line 5 fromTi+1 andQ2i+1. The latter addend is equal toQ2i, becauseti+1 = 0.
Q2i is not adjacent toh2i�1, because they are produced in Line 5 from a FAST-TWO-SUM operation. Hence,
the least significant nonzero bit ofh2i+1 (that is, the bit that causes it to be adjacent toh2i�1) must have come
fromTi+1, which is equal to2s+1b. It follows thath2i+1 is a multiple of2s+1ulp(b). Becausejei+1j < 2s+2,
Lemma 56 implies thatjh2i+1j � 2s+1ulp(b). Hence,jh2i+1j = 2s+1ulp(b).

Similarly, becausejeij < 2s+1, Lemma 56 implies thatjh2i�1j � 2sulp(b). The componentsh2i+1 and
h2i�1 can only be adjacent in the casejh2i�1j = 2sulp(b). In this case, both components are expressible in
one bit.

Hence, each adjacent pair of one-bit components in the input can give rise to an isolated adjacent pair of
one-bit components in the output, but no other adjacent components may appear. Ife is strongly nonover-
lapping, so ish. �
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6.3.7 Compression and Approximation

The algorithms for manipulating expansions do not usually express their results in the most compact form.
In addition to the interspersed zero components that have already been mentioned (and are easily elimi-
nated), it is also common to find components that represent only a few bits of an expansion’s value. Such
fragmentation rarely becomes severe, but it can cause the largest component of an expansion to be a poor
approximation of the value of the whole expansion; the largest component may carry as little as one bit of
significance. Such a component may result, for instance, from cancellation during the subtraction of two
nearly equal expansions.

The COMPRESSalgorithm below finds a compact form for an expansion. More importantly, COMPRESS

guarantees that the largest component is a good approximation to the whole expansion. If round-to-even
tiebreaking is used, COMPRESSalso converts nonoverlapping expansions into nonadjacent expansions.

Priest [76] presents a more complicated “Renormalization” procedure that compresses optimally. Its
greater running time is rarely justified by the marginal reduction in expansion length, unless there is a need
to put expansions in a canonical form.

Theorem 58 Let e =
Pm

i=1 ei be a nonoverlapping expansion ofm p-bit components, wherem � 3.
Suppose that the components ofe are sorted in order of increasing magnitude, except that any of theei may
be zero. Then the following algorithm will produce a nonoverlapping expansionh (nonadjacent if round-to-
even tiebreaking is used) such thath =

Pn
i=1 hi = e, where the componentshi are in order of increasing

magnitude. Ifh 6= 0, none of thehi will be zero. Furthermore, the largest componenthn approximatesh
with an error smaller thanulp(hn).

COMPRESS(e)
1 Q( em
2 bottom( m
3 for i( m� 1 downto 1
4 (Q; q) ( FAST-TWO-SUM(Q; ei)
5 if q 6= 0 then
6 gbottom ( Q
7 bottom( bottom� 1
8 Q( q
9 gbottom ( Q
10 top( 1
11 for i( bottom+ 1 to m
12 (Q; q) ( FAST-TWO-SUM(gi; Q)
13 if q 6= 0 then
14 htop ( Q
15 top( top+ 1
16 htop ( Q
17 Setn (the length ofh) to top
18 return h

Figure 6.16 illustrates the operation of COMPRESS. For clarity,g andh are presented as two separate
arrays in the COMPRESSpseudocode, but they can be combined into a single working array without conflict
by replacing every occurrence of “g” with “ h”.
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Figure 6.16:Operation of COMPRESSwhen no zero-elimination occurs.

Proof Sketch: COMPRESSworks by traversing the expansion from largest to smallest component, then back
from smallest to largest, replacing each adjacent pair with its two-component sum. The first traversal, from
largest to smallest, does most of the compression. The expansiongm + gm�1 + � � � + gbottom produced by
Lines 1 through 9 has the property thatgj�1 � ulp(gj) for all j (and thus successive components overlap
by at most one bit). This fact follows because the output of FAST-TWO-SUM in Line 4 has the property that
q � 1

2ulp(Q), and the value ofq thus produced can only be increased slightly by the subsequent addition of
smaller nonoverlapping components.

The second traversal, from smallest to largest, clips any overlapping bits. The use of FAST-TWO-
SUM in Line 12 is justified because the property thatgi�1 � ulp(gi) guarantees thatQ (the sum of the
components that are smaller thangi) is smaller thangi. The expansionhtop + htop�1 + � � � + h2 + h1
is nonoverlapping (nonadjacent if round-to-even tiebreaking is used) because FAST-TWO-SUM produces
nonoverlapping (nonadjacent) output.

During the second traversal, an approximate total is maintained in the accumulatorQ. The component
hn�1 is produced by the last FAST-TWO-SUM operation that produces a roundoff term; this roundoff term
is no greater than12ulp(hn). Hence, the sumjhn�1 + hn�2 + � � � + h2 + h1j (where the components ofh
are nonoverlapping) is less than ulp(hn), thereforejh� hnj < ulp(hn). �

To ensure thathn is a good approximation toh, only the second traversal is necessary; however, the
first traversal is more effective in reducing the number of components. The fastest way to approximatee is
to simply sum its components from smallest to largest; by the reasoning used above, the result errs by less
than one ulp. This observation is the basis for an APPROXIMATE procedure that is used in the predicates of
Section 6.5.

Theorem 58 is not the strongest statement that can be made about COMPRESS. COMPRESSis effective
even if the components of the input expansion have a certain limited amount of overlap. Furthermore, the
bound forjh� hnj is not tight. (I conjecture that the largest possible relative error is exhibited by a number
that contains a nonzero bit everypth bit; observe that1 + 1

2ulp(1) + 1
4 [ulp(1)]2 + � � � cannot be further

compressed.) These improvements complicate the proof and are not explored here.
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6.3.8 Other Operations

Distillation is the process of summingk unorderedp-bit values. Distillation can be performed by the divide-
and-conquer algorithm of Priest [76], which uses any expansion addition algorithm to sum the values in a
tree-like fashion as illustrated in Figure 6.17. Eachp-bit addend is a leaf of the tree, and each interior node
represents a call to an expansion addition algorithm. If EXPANSION-SUM is used (and zero elimination is
not), then it does not matter whether the tree is balanced; distillation will take precisely1

2k(k � 1) TWO-
SUM operations, regardless of the order in which expansions are combined. If FAST-EXPANSION-SUM is
used, the speed of distillation depends strongly on the balance of the tree. A well-balanced tree will yield
anO(k log k) distillation algorithm, an asymptotic improvement over distilling with EXPANSION-SUM. As
I have mentioned, it is usually fastest to use an unrolled EXPANSION-SUM to create expansions of length
four, and FAST-EXPANSION-SUM with zero elimination to sum these expansions.

To find the product of two expansionse andf , use SCALE-EXPANSION (with zero elimination) to form
the expansionsef1; ef2; : : :, then sum these using a distillation tree.

Division cannot always, of course, be performed exactly, but it can be performed to arbitrary precision
by an iterative algorithm that employs multiprecision addition and multiplication. Consult Priest [76] for
one such algorithm.

The easiest way to compare two expansions is to subtract one from the other, and test the sign of the
result. An expansion’s sign can be easily tested because of the nonoverlapping property; simply check
the sign of the expansion’s most significant nonzero component. (If zero elimination is employed, check
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the component with the largest index.) A nonoverlapping expansion is equal to zero if and only if all its
components are equal to zero.

6.4 Adaptive Precision Arithmetic

6.4.1 Why Adaptivity?

Exact arithmetic is expensive, and when it can be avoided, it should be. Some applications do not need
exact results, but require the absolute error of a result to fall below some threshold. If this threshold is
known before the computation is performed, it is economical to employadaptivity by prediction. One
writes several procedures, each of which approximates the result with a different degree of precision, and
with a correspondingly different speed. Error bounds are derived for each of these procedures; these bounds
are typically much cheaper to compute than the approximations themselves, except for the least precise
approximation. For any particular input, the application computes the error bounds and uses them to choose
the procedure that will attain the necessary accuracy most cheaply.

Sometimes, however, one cannot determine whether a computation will be accurate enough before it is
done. An example is when one wishes to bound the relative error, rather than the absolute error, of the result.
(A special case is determining the sign of an expression; the result must have relative error less than one.)
The result may prove to be much larger than its error bound, and low precision arithmetic will suffice, or it
may be so close to zero that it is necessary to evaluate it exactly to satisfy the bound on relative error. One
cannot generally know in advance how much precision is needed.

In the context of determinant evaluation for computational geometry, Fortune and Van Wyk [36] suggest
using a floating-point filter. An expression is evaluated approximately in hardware precision arithmetic first.
Forward error analysis determines whether the approximate result can be trusted; if not, an exact result is
computed. If the exact computation is only needed occasionally, the application is slowed only a little.

One might hope to improve this idea further by computing a sequence of increasingly accurate results,
testing each one in turn for accuracy. Alas, whenever an exact result is required, one suffers both the cost
of the exact computation and the additional burden of computing several approximate results in advance.
Fortunately, it is often possible to use intermediate results as stepping stones to more accurate results; work
already done is not discarded but is refined.

6.4.2 Making Arithmetic Adaptive

FAST-TWO-SUM, TWO-SUM, and TWO-PRODUCT each have the feature that they can be broken into two
parts: Line 1, which computes an approximate result, and the remaining lines, which calculate the roundoff
error. The latter, more expensive calculation can be delayed until it is needed, if it is ever needed at all. In
this sense, these routines can be madeadaptive, so that they only produce as much of the result as is needed.
I describe here how to achieve the same effect with more general expressions.

Any expression composed of addition, subtraction, and multiplication operations can be calculated adap-
tively in a manner that defines a natural sequence of intermediate results whose accuracy it is appropriate
to test. Such a sequence is most easily described by considering the tree associated with the expression, as
in Figure 6.18(a). The leaves of this tree represent floating-point operands, and its internal nodes represent
operations. Replace each node whose children are both leaves with the sumxi+ yi, wherexi represents the



178 Jonathan Richard Shewchuk

ax bybx ayax bx byay

(a)

1 x1 x 2 y1 y2x 2 x1 x 2 y1 y1 y2 y2

A1

A2

A3

x

2

Expansion Sum(s)

Two-Product

Two-Sum

Expansion
Component

21 T0T T

22

O(1) O(    )O(  )

(c)

+ yx 1 1 + yx1 1 + y2x 2 + y2x 2

(b)

1 x1 x 2 y1 y2x 2 x1 x 2 y1 y1 y2 y2x 2

B 1

B 2

B 3

B 4

5B

2

2

4

3O(    ) terms

O(  ) terms

O(    ) term

O(    ) terms

(d)

Figure 6.18:(a) Formula for the square of the distance between two points a and b. (b) The lowest subex-
pressions in the tree are expressed as the sum of an approximate value and a roundoff error. (c) A simple
incremental adaptive method for evaluating the expression. The approximations A1 and A2 are generated
and tested in turn. The final expansion A3 is exact. Each Ai includes all terms of sizeO(�i�1) or larger, and
hence has error no greater than O(�i). (d) Incremental adaptivity taken to an extreme. The three subex-
pression trees T0, T1, and T2 are themselves calculated adaptively. Each Bi incorporates only the terms
needed to reduce its error to O(�i).

approximate value of the subexpression, andyi represents the roundoff error incurred while calculatingxi,
as illustrated in Figure 6.18(b). Expand the expression to form a polynomial.

In the expanded expression, the terms containing many occurrences ofy variables (roundoff errors) are
dominated by terms containing fewer occurrences. As an example, consider the expression(ax � bx)

2 +
(ay � by)

2 (Figure 6.18), which calculates the square of the distance between two points in the plane. Set
ax � bx = x1 + y1 anday � by = x2 + y2. The resulting expression, expanded in full, is

(x21 + x22) + (2x1y1 + 2x2y2) + (y21 + y22): (6.5)

It is significant that eachyi is small relative to its correspondingxi. Using standard terminology from
forward error analysis [97], the quantity12ulp(1) is called themachine epsilon, denoted�. Recall that exact
rounding guarantees thatjyij � �jxij; the quantity� bounds therelative errorerr(a~ b)=(a~ b) of any basic
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floating-point operation. Note that� = 2�p. In IEEE 754 double precision arithmetic,� = 2�53; in single
precision,� = 2�24.

Expression 6.5 can be divided into three parts, having magnitudes ofO(1), O(�), andO(�2), respec-
tively. Denote these partsT0, T1, andT2. More generally, for any expression expanded in this manner, let
Ti be the sum of all products containingi of they variables, so thatTi has magnitudeO(�i).

One can obtain an approximationAj with error no larger thanO(�j) by computing exactly the sum of
the firstj terms,T0 throughTj�1. The sequenceA1; A2; : : : of increasingly accurate approximations can be
formed incrementally;Aj is the exact sum ofAj�1 andTj�1. Members of this sequence are generated and
tested, as illustrated in Figure 6.18(c), until one is sufficiently accurate.

The approximationAj is not the way to achieve an error bound ofO(�j) with the least amount of
work. For instance, a floating-point calculation of(x21 + x22) using no exact arithmetic techniques will
achieve anO(�) error bound, albeit with a larger constant than the error bound forA1. Experimentation has
shown that the fastest adaptive predicates are written by calculating an approximation having boundO(�j)
as quickly as possible, then moving on to the next smaller order of magnitude. Improvements in the constant
prefacing each error bound will make a difference in only a small number of cases. Hence, I will consider
two modifications to the technique just described. The first modification computes each error bound from
the minimum possible number of roundoff terms. This lazy approach is presented here for instructional
purposes, but is not generally the fastest. The second modification I will consider, and the one I recommend
for use, is faster because it spends less time collating small data.

The first modification is to compute the subexpressionsT0, T1, andT2 adaptively as well. The method
is the same: replace each bottom-level subexpression ofT0 (andT1 andT2) with the sum of an approximate
result and an error term, and expandT0 into a sum of terms of differing order. An approximationBj having
an error bound of magnitudeO(�j) may be found by approximating eachT term with errorO(�j). Because
the termTk has magnitude at mostO(�k), it need not be approximated with any better relative error than
O(�j�k).

Figure 6.18(d) shows that the method is as lazy as possible, in the sense that each approximationBj uses
only the roundoff terms needed to obtain anO(�j) error bound. (Note that this is true at every level of the
tree. It is apparent in the figure that every roundoff term produced is fed into a different calculation than the
larger term produced with it.) However, the laziest approach is not necessarily the fastest approach. The cost
of this method is unnecessarily large for two reasons. First, recall from Section 6.3.8 that FAST-EXPANSION-
SUM is most effective when terms are summed in a balanced manner. The additions in Figure 6.18(d) are less
well balanced than those in Figure 6.18(c). Second, and more importantly, there is a good deal of overhead
for keeping track of many small pieces of the sum; the method sacrifices most of the advantages of the
compressed form in which expansions are represented. Figure 6.18(d) does not fully reveal how convoluted
this extreme form of adaptivity can become for larger expressions. In addition to having an unexpectedly
large overhead, this method can be exasperating for the programmer.

The final method for incremental adaptivity I shall present, which is used to derive the geometric predi-
cates in Section 6.5, falls somewhere between the two described above. As in the first method, compute the
sequenceA1; A2; : : :, and define alsoA0 = 0. We have seen that the error bound of each termAj may be
improved fromO(�j) toO(�j+1) by (exactly) addingTj to it. However, because the magnitude ofTj itself is
O(�j), the same effect can be achieved (with a slightly worse constant in the error bound) by computingTj
with floating-point arithmetic and tolerating the roundoff error, rather than computingTj exactly. Hence, an
approximationCj+1 having anO(�j+1) error bound is computed by summingAj and an inexpensivecor-
rectional term, which is merely the floating-point approximation toTj, as illustrated in Figure 6.19.Cj+1 is
nearly as accurate asAj+1 but takes much less work to compute. IfCj+1 is not sufficiently accurate, then it



180 Jonathan Richard Shewchuk

x1 x1 x 2 y1 y2x 2 x1 x 2 y1 y1 y2 y2

1A

2C 2A

3C 43 C=A

C1

1TT 0 T 2

Expansion Sum(s)

Two-Product

Expansion
Component

Addition
Floating-Point

2 2

ct ct

ct

Figure 6.19:An adaptive method of intermediate complexity that is frequently more efficient than the other
two. Each Ci achieves an O(�i) error bound by adding an inexpensive correctional term (labeled “ct”) to
Ai�1.

is thrown away, and the exact value ofTj is computed and added toAj to formAj+1. This scheme reuses
the work done in performing exact calculations, but does not reuse the correctional terms. (In practice, no
speed can be gained by reusing the correctional terms.)

The first value (C1) computed by this method is an approximation toT0; if C1 is sufficiently accurate,
it is unnecessary to compute they terms, or use any exact arithmetic techniques, at all. (Recall that they
terms are more expensive to compute than thex terms.) This first test is identical to Fortune and Van Wyk’s
floating-point filter.

This method does more work during each stage of the computation than the first method, but typically
terminates one stage earlier. It is slower when the exact result must be computed, but is faster in applications
that rarely need an exact result. In some cases, it may be desirable to test certain members of both sequences
A andC for accuracy; the predicates defined in Section 6.5 do so.

All three methods of making expressions adaptive are mechanical and can be automated. An expression
compiler similar to Fortune and Van Wyk’s [37], discussed in Section 6.2, would be valuable; it could convert
expressions into code that evaluates these expressions adaptively, with automatically computed error bounds.

The reader may wonder if writing an expression in sum-of-products form isn’t inefficient. In ordinary
floating-point arithmetic it often is, but it seems to make little difference when using the exact arithmetic
algorithms of Section 6.3. Indeed, the multiplication operation described in Section 6.3.8 multiplies two
expansions by expanding the product into sum-of-products form.

These ideas are not exclusively applicable to the multiple-component approach to arbitrary precision
arithmetic. They will work with multiple-digit formats as well, though the details differ.
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6.5 Implementation of Geometric Predicates

6.5.1 The Orientation and Incircle Tests

Let a, b, c, andd be four points in the plane. Define a procedure ORIENT2D(a; b; c) that returns a positive
value if the pointsa, b, andc are arranged in counterclockwise order, a negative value if the points are in
clockwise order, and zero if the points are collinear. A more common (but less symmetric) interpretation
is that ORIENT2D returns a positive value ifc lies to the left of the directed lineab; for this purpose the
orientation test is used by many geometric algorithms.

Define also a procedure INCIRCLE(a; b; c; d) that returns a positive value ifd lies inside the oriented
circle abc. By oriented circle, I mean the unique (and possibly degenerate) circle througha, b, and c,
with these points occurring in counterclockwise order about the circle. (If these points occur in clockwise
order, INCIRCLE will reverse the sign of its output, as if the circle’s exterior were its interior.) INCIRCLE

returns zero if and only if all four points lie on a common circle. Both ORIENT2D and INCIRCLE have the
symmetry property that interchanging any two of their parameters reverses the sign of their result.

These definitions extend trivially to arbitrary dimensions. For instance, ORIENT3D(a; b; c; d) returns a
positive value ifd lies below the oriented plane passing througha, b, andc. By oriented plane, I mean that
a, b, andc appear in counterclockwise order when viewed from above the plane. (One can apply aleft-hand
rule: orient your left hand with fingers curled to follow the circular sequenceabc. If your thumb points
towardd, ORIENT3D returns a positive value.) To generalize the orientation test to dimensionalityd, let
u1; u2; : : : ; ud be the unit vectors; ORIENT is defined so that ORIENT(u1 ; u2; : : : ; ud; 0) = 1.

In any dimension, the orientation and incircle tests may be implemented as matrix determinants. For
three dimensions:

ORIENT3D(a; b; c; d) =

���������
ax ay az 1
bx by bz 1
cx cy cz 1
dx dy dz 1

���������
(6.6)

=

�������
ax � dx ay � dy az � dz
bx � dx by � dy bz � dz
cx � dx cy � dy cz � dz

������� (6.7)

INSPHERE(a; b; c; d; e) =

�����������

ax ay az a2x + a2y + a2z 1

bx by bz b2x + b2y + b2z 1

cx cy cz c2x + c2y + c2z 1

dx dy dz d2x + d2y + d2z 1

ex ey ez e2x + e2y + e2z 1

�����������
(6.8)

=

���������
ax � ex ay � ey az � ez (ax � ex)

2 + (ay � ey)
2 + (az � ez)

2

bx � ex by � ey bz � ez (bx � ex)
2 + (by � ey)

2 + (bz � ez)
2

cx � ex cy � ey cz � ez (cx � ex)
2 + (cy � ey)

2 + (cz � ez)
2

dx � ex dy � ey dz � ez (dx � ex)
2 + (dy � ey)

2 + (dz � ez)
2

���������
(6.9)

These formulae generalize to other dimensions in the obvious way. Expressions 6.6 and 6.7 can be shown
to be equivalent by simple algebraic transformations, as can Expressions 6.8 and 6.9 with a little more effort.
These equivalences are unsurprising because one expects the result of any orientation or incircle test not to
change if all the points undergo an identical translation in the plane. Expression 6.7, for instance, follows
from Expression 6.6 by translating each point by�d.
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Figure 6.20:Shaded triangles can be translated to the origin without incurring roundoff error (Lemma 40).
In most triangulations, such triangles are the common case.

When computing these determinants using the techniques of Section 6.3, the choice between Expres-
sions 6.6 and 6.7, or between 6.8 and 6.9, is not straightforward. In principle, Expression 6.6 seems prefer-
able because it can only produce a 96-component expansion, whereas Expression 6.7 could produce an
expansion having 192 components. These numbers are somewhat misleading, however, because with zero-
elimination, expansions rarely grow longer than six components in real applications. Nevertheless, Expres-
sion 6.7 takes roughly 25% more time to compute in exact arithmetic, and Expression 6.9 takes about 50%
more time than Expression 6.8. The disparity likely increases in higher dimensions.

Nevertheless, the mechanics of error estimation turn the tide in the other direction. Important as a fast
exact test is, it is equally important to avoid exact tests whenever possible. Expressions 6.7 and 6.9 tend
to have smaller errors (and correspondingly smaller error estimates) because their errors are a function of
the relative coordinates of the points, whereas the errors of Expressions 6.6 and 6.8 are a function of the
absolute coordinates of the points.

In most geometric applications, the points that serve as parameters to geometric tests tend to be close
to each other. Commonly, their absolute coordinates are much larger than the distances between them. By
translating the points so they lie near the origin, working precision is freed for the subsequent calculations.
Hence, the errors and error bounds for Expressions 6.7 and 6.9 are generally much smaller than for Ex-
pressions 6.6 and 6.8. Furthermore, the translation can often be done without roundoff error. Figure 6.20
demonstrates a toy problem: suppose ORIENT2D is used to find the orientation of each triangle in a trian-
gulation. Thanks to Lemma 40, any shaded triangle can be translated so that one of its vertices lies at the
origin without roundoff error; the white triangles may or may not suffer from roundoff during such transla-
tion. If the complete triangulation is much larger than the portion illustrated, only a small proportion of the
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triangles (those near a coordinate axis) will suffer roundoff. Because exact translation is the common case,
my adaptive geometric predicates test for and exploit this case.

Once a determinant has been chosen for evaluation, there are several methods to evaluate it. A number of
methods are surveyed by Fortune and Van Wyk [36], and only their conclusion is repeated here. The cheapest
method of evaluating the determinant of a5 � 5 or smaller matrix seems to be by dynamic programming
applied to cofactor expansion. Evaluate the

�d
2

�
determinants of all2 � 2 minors of the first two columns,

then the
�d
3

�
determinants of all3� 3 minors of the first three columns, and so on. All four of my predicates

use this method.

6.5.2 ORIENT2D

My implementation of ORIENT2D computes a sequence of up to four results (labeled A through D) as
illustrated in Figure 6.21. The exact result D may be as long as sixteen components, but zero elimination is
used, so a length of two to six components is more common in practice.

A, B, and C are logical places to test the accuracy of the result before continuing. In most applications,
the majority of calls to ORIENT2D will end with the floating-point approximation A, which is computed
without resort to any exact arithmetic techniques. Although the four-component expansion B, like A, has
an error ofO(�), it is an appropriate value to test because B is the exact result if the four subtractions at the
bottom of the expression tree are performed without roundoff error (corresponding to the shaded triangles
in Figure 6.20). Because this is the common case, ORIENT2D explicitly tests for it; execution continues
only if roundoff occurred during the translation of coordinates and B is smaller than its error bound. The
corrected estimate C has an error bound ofO(�2). If C is not sufficiently accurate, the exact determinant D
is computed.

There are two unusual features of this test, both of which arise because only the sign of the determinant is
needed. First, the correctional term added to B to form C is not added exactly; instead, the APPROXIMATE

procedure of Section 6.3.7 is used to find an approximation B0 of B, and the correctional term is added
to B0 with the possibility of roundoff error. The consequent errors may be of magnitudeO(�B), which
would normally preclude obtaining an error bound ofO(�2). However, the sign of the determinant is only
questionable if B is of magnitudeO(�), so anO(�2) error bound for C can be established.

The second interesting feature is that, if C is not sufficiently accurate, no more approximations are
computed before computing the exact determinant. To understand why, consider three collinear pointsa, b,
andc; the determinant defined by these points is zero. If a coordinate of one of these points is perturbed by a
single ulp, the determinant typically increases toO(�). Hence, one might guess that when a determinant is no
larger thanO(�2), it is probably zero. This intuition seems to hold in practice for all the predicates considered
herein, on both random and “practical” point sets. Determinants that don’t stop with approximation C are
nearly always zero.

The derivation of error bounds for these values is tricky, so an example is given here. The easiest way
to apply forward error analysis to an expression whose value is calculated in floating-point arithmetic is to
express the exact value of each subexpression in terms of the computed value plus an unknown error term
whose magnitude is bounded. For instance, the error incurred by the computationx ( a � b is no larger
than�jxj. Furthermore, the error is smaller than�ja + bj. Each of these bounds is useful under different
circumstances. Ift represents the true valuea+ b, an abbreviated way of expressing these notions is to write
t = x� �jxj andt = x� �jtj. Henceforth, this notation will be used as shorthand for the relationt = x+ �
for some� that satisfiesj�j � �jxj andj�j � �jtj.
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Figure 6.21:Adaptive calculations used by the 2D orientation test. Dashed boxes represent nodes in the
original expression tree.

Let us consider the error bound for A. For each subexpression in the expression tree of the orientation
test, denote its true (exact) valueti and its approximate valuexi as follows.

t1 = ax � cx x1 = ax 	 cx
t2 = by � cy x2 = by 	 cy
t3 = ay � cy x3 = ay 	 cy
t4 = bx � cx x4 = bx 	 cx
t5 = t1t2 x5 = x1 
 x2
t6 = t3t4 x6 = x3 
 x4
tA = t5 � t6 A = x5 	 x6

From these definitions, it is clear thatt1 = x1 � �jx1j; similar bounds hold fort2, t3, andt4. Observe
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Approximation Error bound
A (3�+ 16�2)
 (jx5j � jx6j)
B0 (2�+ 12�2)
 (jx5j � jx6j)
C (3�+ 8�2)
 jB0j � (9�2 + 64�3)
 (jx5j � jx6j)

Table 6.1: Error bounds for the expansions calculated by ORIENT2D. B0 is a p-bit approximation of the
expansion B, computed by the APPROXIMATE procedure. Note that each coefficient is expressible in p bits.

also thatx5 = x1 
 x2 = x1x2 � �jx5j. It follows that

t5 = t1t2 = x1x2 � (2�+ �2)jx1x2j
= x5 � �jx5j � (2�+ �2)(jx5j � �jx5j)
= x5 � (3�+ 3�2 + �3)jx5j:

Similarly, t6 = x6 � (3�+ 3�2 + �3)jx6j.
It may seem odd to be keeping track of terms smaller thanO(�), but the effort to find the smallest

machine-representable coefficient for each error bound is justified if it ever prevents a determinant compu-
tation from becoming more expensive than necessary. An error bound for A can now be derived.

tA = t5 � t6 = x5 � x6 � (3�+ 3�2 + �3)(jx5j+ jx6j)
= A � �jAj � (3�+ 3�2 + �3)(jx5j+ jx6j)

One can minimize the effect of the term�jAj by taking advantage of the fact that we are only interested in
the sign oftA. One can conclude with certainty that A has the correct sign if

(1� �)jAj > (3�+ 3�2 + �3)(jx5j+ jx6j);

which is true if
jAj � (3�+ 6�2 + 8�3)(jx5j+ jx6j):

This bound is not directly applicable, because its computation will incur roundoff error. To account for
this, multiply the coefficient by(1 + �)2 (a factor of(1 + �) for the addition ofjx5j andjx6j, and another
such factor for the multiplication). Hence, we are secure that the sign of A is correct if

jAj � (3�+ 12�2 + 24�3)
 (jx5j � jx6j):

This bound is not directly applicable either, because the coefficient is not expressible inp bits. Rounding
up to the nextp-bit number, we have the coefficient(3�+ 16�2), which should be exactly computed once at
program initialization and reused during each call to ORIENT2D.

Error bounds for A, B0, and C are given in Table 6.1. The bound for B0 takes advantage of Theorem 58,
which shows that B0 approximates B with relative error less than2�. (Recall from Section 6.3.7 that the
largest component of B might have only one bit of precision.)

These bounds have the pleasing property that they are zero in the common case that all three input
points lie on a horizontal or vertical line. Hence, although ORIENT2D usually resorts to exact arithmetic
when given collinear input points, it only performs the approximate test (A) in the two cases that occur most
commonly in practice.
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Double precision ORIENT2D timings in microseconds
Points Uniform Geometric Nearly

Method Random Random Collinear
Approximate (6.7) 0.15 0.15 0.16
Exact (6.6) 6.56 6.89 6.31
Exact (6.7) 8.35 8.48 8.13
Exact (6.6), MPFUN 92.85 94.03 84.97
Adaptive A (6.7), approximate 0.28 0.27 0.22
Adaptive B (6.7) 1.89
Adaptive C (6.7) 2.14
Adaptive D (6.7), exact 8.35
LN adaptive (6.7), approximate 0.32 n/a
LN adaptive (6.7), exact n/a 4.43

Table 6.2:Timings for ORIENT2D on a DEC 3000/700 with a 225 MHz Alpha processor. All determinants
use the 2D version of either Expression 6.6 or the more stable Expression 6.7 as indicated. The first
two columns indicate input points generated from a uniform random distribution and a geometric random
distribution. The third column considers two points chosen from one of the random distributions, and a third
point chosen to be approximately collinear to the first two. Timings for the adaptive tests are categorized
according to which result was the last generated. Each timing is an average of 60 or more randomly
generated inputs. For each such input, time was measured by a Unix system call before and after 10,000
iterations of the predicate. Individual timings vary by approximately 10%. Timings of Bailey’s MPFUN
package and Fortune and Van Wyk’s LN package are included for comparison.

Compiler effects affect the implementation of ORIENT2D. By separating the calculation of A and the
remaining calculations into two procedures, with the former calling the latter if necessary, I reduced the time
to compute A by 25%, presumably because of improvements in the compiler’s ability to perform register
allocation.

Table 6.2 lists timings for ORIENT2D, given random inputs. Observe that the adaptive test, when it
stops at the approximate result A, takes nearly twice as long as the approximate test because of the need to
compute an error bound. The table includes a comparison with Bailey’s MPFUN [4], chosen because it is
the fastest portable and freely available arbitrary precision package I know of. ORIENT2D coded with my
(nonadaptive) algorithms is roughly thirteen times faster than ORIENT2D coded with MPFUN.

Also included is a comparison with an orientation predicate for 53-bit integer inputs, created by Fortune
and Van Wyk’s LN. The LN-generated orientation predicate is quite fast because it takes advantage of the
fact that it is restricted to bounded integer inputs. My exact tests cost less than twice as much as LN’s; this
seems like a reasonable price to pay for the ability to handle arbitrary exponents in the input.

These timings are not the whole story; LN’s static error estimate is typically much larger than the runtime
error estimate used for adaptive stage A, and LN uses only two stages of adaptivity, so the LN-generated
predicates are slower in some applications, as Section 6.5.4 will demonstrate. It is significant that for 53-bit
integer inputs, the multiple-stage predicates will rarely pass stage B because the initial translation is usually
done without roundoff error; hence, the LN-generated ORIENT2D usually takes more than twice as long to
produce an exact result. It should be emphasized, however, that these are not inherent differences between
LN’s multiple-digit integer approach and my multiple-component floating-point approach; LN could, in
principle, employ the same runtime error estimate and a similar multiple-stage adaptivity scheme.
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Approximation Error bound
A (7�+ 56�2)
 (�a � �b � �c)
B0 (3�+ 28�2)
 (�a � �b � �c)
C (3�+ 8�2)
 jB0j � (26�2 + 288�3)
 (�a � �b � �c)

�a = jx1j 
 (jx6j � jx7j)
= jaz 	 dzj 
 (j(bx 	 dx)
 (cy 	 dy)j � j(by 	 dy)
 (cx 	 dx)j)

�b = jbz 	 dzj 
 (j(cx 	 dx)
 (ay 	 dy)j � j(cy 	 dy)
 (ax 	 dx)j)
�c = jcz 	 dzj 
 (j(ax 	 dx)
 (by 	 dy)j � j(ay 	 dy)
 (bx 	 dx)j)

Table 6.3:Error bounds for the expansions calculated by ORIENT3D.

Double precision ORIENT3D timings in microseconds
Points Uniform Geometric Nearly

Method Random Random Coplanar
Approximate (6.7) 0.25 0.25 0.25
Exact (6.6) 33.30 38.54 32.90
Exact (6.7) 42.69 48.21 42.41
Exact (6.6), MPFUN 260.51 262.08 246.64
Adaptive A (6.7), approximate 0.61 0.60 0.62
Adaptive B (6.7) 12.98
Adaptive C (6.7) 15.59
Adaptive D (6.7), exact 27.29
LN adaptive (6.7), approximate 0.85 n/a
LN adaptive (6.7), exact n/a 18.11

Table 6.4:Timings for ORIENT3D on a DEC 3000/700. All determinants are Expression 6.6 or the more
stable Expression 6.7 as indicated. Each timing is an average of 120 or more randomly generated inputs.
For each such input, time was measured by a Unix system call before and after 10,000 iterations of the
predicate. Individual timings vary by approximately 10%.

6.5.3 ORIENT3D, INCIRCLE, and INSPHERE

Figure 6.22 illustrates the implementation of ORIENT3D, which is similar to the ORIENT2D implementa-
tion. A is the standard floating-point result. B is exact if the subtractions at the bottom of the tree incur no
roundoff. C represents a drop in the error bound fromO(�) toO(�2). D is the exact determinant.

Error bounds for the largest component of each of these expansions are given in Table 6.3, partly in terms
of the variablesx1, x6, andx7 in Figure 6.22. The bounds are zero if all four input points share the samex-,
y-, or z-coordinate, so only the approximate test is needed in the most common instances of coplanarity.

Table 6.4 lists timings for ORIENT3D, given random inputs. The error bound for A is expensive to
compute, and increases the amount of time required to perform the approximate test in the adaptive case by
a factor of two and a half. The gap between my exact algorithm and MPFUN is smaller than in the 2D case,
but is still a factor of nearly eight.
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Figure 6.22:Adaptive calculations used by the 3D orientation test. Bold numbers indicate the length of an
expansion. Only part of the expression tree is shown; two of the three cofactors are omitted, but their results
appear as dashed components and expansions.
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Approximation Error bound
A (10� + 96�2)
 (�a � �b � �c)
B0 (4�+ 48�2)
 (�a � �b � �c)
C (3�+ 8�2)
 jB0j � (44�2 + 576�3)
 (�a � �b � �c)

�a = ((ax 	 dx)
2 � (ay 	 dy)

2)
 (j(bx 	 dx)
 (cy 	 dy)j � j(by 	 dy)
 (cx 	 dx)j)
�b = ((bx 	 dx)

2 � (by 	 dy)
2)
 (j(cx 	 dx)
 (ay 	 dy)j � j(cy 	 dy)
 (ax 	 dx)j)

�c = ((cx 	 dx)
2 � (cy 	 dy)

2)
 (j(ax 	 dx)
 (by 	 dy)j � j(ay 	 dy)
 (bx 	 dx)j)

Table 6.5:Error bounds for the expansions calculated by INCIRCLE. Squares are approximate.

Double precision INCIRCLE timings in microseconds
Points Uniform Geometric Nearly

Method Random Random Cocircular
Approximate (6.9) 0.31 0.28 0.30
Exact (6.8) 71.66 83.01 75.34
Exact (6.9) 91.71 118.30 104.44
Exact (6.8), MPFUN 350.77 343.61 348.55
Adaptive A (6.9), approximate 0.64 0.59 0.64
Adaptive B (6.9) 44.56
Adaptive C (6.9) 48.80
Adaptive D (6.9), exact 78.06
LN adaptive (6.9), approximate 1.33 n/a
LN adaptive (6.9), exact n/a 32.44

Table 6.6:Timings for INCIRCLE on a DEC 3000/700. All determinants are the 2D version of either Expres-
sion 6.8 or the more stable Expression 6.9 as indicated. Each timing is an average of 100 or more randomly
generated inputs, except adaptive stage D. (It is difficult to generate cases that reach stage D.) For each
such input, time was measured by a Unix system call before and after 1,000 iterations of the predicate.
Individual timings vary by approximately 10%.

Oddly, the table reveals that D is calculated more quickly than the exact result is calculated by the non-
adaptive version of ORIENT3D. The explanation is probably that D is only computed when the determinant
is zero or very close to zero, hence the lengths of the intermediate expansions are smaller than usual, and the
computation time is less. Furthermore, when some of the point coordinates are translated without roundoff
error, the adaptive predicate ignores branches of the expression tree that evaluate to zero.

INCIRCLE is implemented similarly to ORIENT3D, as the determinants are similar. The corresponding
error bounds appear in Table 6.5, and timings appear in Table 6.6.

Timings for INSPHEREappear in Table 6.7. This implementation differs from the other tests in that, due
to programmer laziness, D is not computed incrementally from B; rather, if C is not accurate enough, D is
computed from scratch. Fortunately, C is usually accurate enough.

The LN exact tests have an advantage of a factor of roughly 2.5 for INCIRCLE and 4 for INSPHERE, so
the cost of handling floating-point operands is greater with the larger expressions. As with the orientation
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Double precision INSPHEREtimings in microseconds
Points Uniform Geometric Nearly

Method Random Random Cospherical
Approximate (6.9) 0.93 0.95 0.93
Exact (6.8) 324.22 378.94 347.16
Exact (6.9) 374.59 480.28 414.13
Exact (6.8), MPFUN 1,017.56 1,019.89 1,059.87
Adaptive A (6.9), approximate 2.13 2.14 2.14
Adaptive B (6.9) 166.21
Adaptive C (6.9) 171.74
Adaptive D (6.8), exact 463.96
LN adaptive (6.9), approximate 2.35 n/a
LN adaptive (6.9), exact n/a 116.74

Table 6.7:Timings for INSPHERE on a DEC 3000/700. All determinants are Expression 6.8 or the more
stable Expression 6.9 as indicated. Each timing is an average of 25 or more randomly generated inputs,
except adaptive stage D. For each such input, time was measured by a Unix system call before and after
1,000 iterations of the predicate. Individual timings vary by approximately 10%.

tests, this cost is mediated by better error bounds and four-stage adaptivity.

The timings for the exact versions of all four predicates show some sensitivity to the distribution of the
operands; they take 5% to 30% longer to execute with geometrically distributed operands (whose exponents
vary widely) than with uniformly distributed operands. This difference occurs because the intermediate and
final expansions are larger when the operands have broadly distributed exponents. The exact orientation
predicates are cheapest when their inputs are collinear/coplanar, because of the smaller expansions that
result, but this effect does not occur for the exact incircle predicates.

6.5.4 Performance in Two Triangulation Programs

To evaluate the effectiveness of the adaptive tests in applications, I integrated them into Triangle and
Pyramid, and recorded the speeds of 2D divide-and-conquer Delaunay triangulation and 3D incremental
Delaunay tetrahedralization under various conditions. For both 2D and 3D, three types of inputs were
tested: uniform random points, points lying (approximately) on the boundary of a circle or sphere, and a
square or cubic grid of lattice points, tilted so as not to be aligned with the coordinate axes. The latter two
were chosen for their nastiness. The lattices have been tilted using approximate arithmetic, so they are not
perfectly cubical, and the exponents of their coordinates vary enough that LN cannot be used. (I have also
tried perfect lattices with 53-bit integer coordinates, but ORIENT3D and INSPHEREnever pass stage B; the
perturbed lattices are preferred here because they occasionally force the predicates into stage C or D.)

The results for 2D, which appear in Table 6.8, indicate that the four-stage predicates add about 8% to
the total running time for randomly distributed input points, mainly because of the error bound tests. For the
more difficult point sets, the penalty may be as great as 30%. Of course, this penalty applies precisely for
the point sets that are most likely to cause difficulties when exact arithmetic is not available.

The results for 3D, outlined in Table 6.9, are less pleasing. The four-stage predicates add about 35%
to the total running time for randomly distributed input points; for points distributed approximately on the
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2D divide-and-conquer Delaunay triangulation
Uniform Perimeter Tilted
Random of Circle Grid

Input sites 1,000,000 1,000,000 1,000,000
ORIENT2D calls
Adaptive A, approximate 9,497,314 6,291,742 9,318,610
Adaptive B 121,081
Adaptive C 118
Adaptive D, exact 3
Average time,�s 0.32 0.38 0.33

LN approximate 9,497,314 2,112,284 n/a
LN exact 4,179,458 n/a
LN average time,�s 0.35 3.16 n/a
INCIRCLE calls
Adaptive A, approximate 7,596,885 3,970,796 7,201,317
Adaptive B 50,551 176,470
Adaptive C 120 47
Adaptive D, exact 4
Average time,�s 0.65 1.11 1.67

LN approximate 6,077,062 0 n/a
LN exact 1,519,823 4,021,467 n/a
LN average time,�s 7.36 32.78 n/a
Program running time, seconds
Approximate version 57.3 59.9 48.3
Robust version 61.7 64.7 62.2
LN robust version 116.0 214.6 n/a

Table 6.8:Statistics for 2D divide-and-conquer Delaunay triangulation of several point sets. Timings are
accurate to within 10%.

surface of a sphere, the penalty is a factor of eleven. Ominously, however, the penalty for the tilted grid
is uncertain, because the tetrahedralization program using approximate arithmetic failed to terminate. A
debugger revealed that the point location routine was stuck in an infinite loop because a geometric inconsis-
tency had been introduced into the mesh due to roundoff error. Robust arithmetic is not always slower after
all.

In these programs (and likely in any program), three of the four-stage predicates (INSPHEREbeing the
exception) are faster than their LN equivalents. This is a surprise, considering that the four-stage predicates
accept 53-bit floating-point inputs whereas the LN-generated predicates are restricted to 53-bit integer in-
puts. However, the integer predicates would probably outperform the floating-point predicates if they were
to adopt the same runtime error estimate and a similar four-stage adaptivity scheme.
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3D incremental Delaunay tetrahedralization
Uniform Surface Tilted
Random of Sphere Grid

Input sites 10,000 10,000 10,000
ORIENT3D calls
Adaptive A, approximate 2,735,668 1,935,978 5,542,567
Adaptive B 602,344
Adaptive C 1,267,423
Adaptive D, exact 28,185
Average time,�s 0.72 0.72 4.12

LN approximate 2,735,668 1,935,920 n/a
LN exact 58 n/a
LN average time,�s 0.99 1.00 n/a
INSPHEREcalls
Adaptive A, approximate 439,090 122,273 3,080,312
Adaptive B 180,383 267,162
Adaptive C 1,667 548,063
Adaptive D, exact
Average time,�s 2.23 96.45 48.12

LN approximate 438,194 104,616 n/a
LN exact 896 199,707 n/a
LN average time,�s 2.50 70.82 n/a
Program running time, seconds
Approximate version 4.3 3.0 1
Robust version 5.8 34.1 108.5
LN robust version 6.5 30.5 n/a

Table 6.9: Statistics for 3D incremental Delaunay tetrahedralization of several point sets. Timings are
accurate to within 10%. The approximate code failed to terminate on the tilted grid input.

6.6 Caveats

Unfortunately, the arbitrary precision arithmetic routines described herein are not universally portable; both
hardware and compilers can prevent them from functioning correctly.

Compilers can interfere by making invalid optimizations based on misconceptions about floating-point
arithmetic. For instance, a clever but incorrect compiler might cause expansion arithmetic algorithms to fail
by deriving the “fact” thatbvirtual, computed by Line 2 of FAST-TWO-SUM, is equal tob, and optimizing
the subtraction away. This optimization would be valid if computers stored arbitrary real numbers, but is
incorrect for floating-point numbers. Unfortunately, not all compiler developers are aware of the importance
of maintaining correct floating-point language semantics, but as a whole, they seem to be improving. Gold-
berg [44,x3.2.3] presents several related examples of how carefully designed numerical algorithms can be
utterly ruined by incorrect optimizations.

Even floating-point units that use binary arithmetic with exact rounding, including those that conform
to the IEEE 754 standard, can have subtle properties that undermine the assumptions of the algorithms. The
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most common such difficulty is the presence of extended precision internal floating-point registers, such
as those on the Intel 80486 and Pentium processors. While such registers usually improve the stability
of floating-point calculations, they cause the methods described herein for determining the roundoff of an
operation to fail. There are several possible workarounds for this problem. In C, it is possible to designate
a variable as volatile, implying that it must be stored to memory. This ensures that the variable is rounded
to a p-bit significand before it is used in another operation. Forcing intermediate values to be stored to
memory and reloaded can slow down the algorithms significantly, and there is a worse consequence. Even
a volatile variable could bedoubly rounded, being rounded once to the internal extended precision format,
then rounded again to single or double precision when it is stored to memory. The result after double
rounding is not always the same as it would be if it had been correctly rounded to the final precision, and
Priest [77, page 103] describes a case wherein the roundoff error produced by double rounding may not
be expressible inp bits. This might be alleviated by a more complex (and slower) version of FAST-TWO-
SUM. A better solution is to configure one’s processor to round internally to double precision. While most
processors with internal extended precision registers can be thus configured, and most compilers provide
support for manipulating processor control state, such support varies between compilers and is not portable.
Nevertheless, the speed advantage of multiple-component methods makes it well worth the trouble to learn
the right incantation to correctly configure your processor.

The algorithms do work correctly without special treatment on most current Unix workstations. Nev-
ertheless, users should be careful when trying the routines, or moving to a new platform, to ensure that the
underlying assumptions of the method are not violated.

6.7 Conclusions

The algorithms presented herein are simple and fast; looking at Figure 6.9, it is difficult to imagine how ex-
pansions could be summed with fewer operations without special hardware assistance. Two features of these
techniques account for the improvement in speed relative to other techniques, especially for numbers whose
precision is only a few components in length. The first is the relaxation of the usual condition that numbers
be normalized to fixed digit positions. Instead, one enforces the much weaker condition that expansions
be nonoverlapping (or strongly nonoverlapping). Expansions can be summed and the resulting components
made nonoverlapping at a cost of six floating-point operations and one comparison per component. It seems
unlikely that normalization to fixed digit positions can be done so quickly in a portable way on current pro-
cessors. The second feature to which I attribute the improved speed is the fact that most packages require
expensive conversions between ordinary floating-point numbers and the packages’ internal formats. With
the techniques Priest and I describe, no conversions are necessary.

The reader may be misled and attribute the whole difference between my algorithms and MPFUN to
the fact that I store double precision components, while MPFUN stores single precision digits, and imagine
the difference would go away if MPFUN were reimplemented in double precision. Such a belief betrays a
misunderstanding of how MPFUN works. MPFUN uses double precision arithmetic internally, and obtains
exact results by using digits narrow enough that they can be multiplied exactly. Hence, MPFUN’s half-
precision digits are an integral part of its approach: to calculate exactly by avoiding roundoff error. The
surprise of multiple-component methods is that reasonable speed can be attained by allowing roundoff to
happen, then accounting for it after the fact.

As well as being fast, multiple-component algorithms are also reasonably portable, making no assump-
tions other than that a machine has binary arithmetic with exact rounding (and round-to-even tiebreaking if
FAST-EXPANSION-SUM is to be used instead of LINEAR-EXPANSION-SUM). No representation-dependent
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tricks like bit-masking to extract exponent fields are used. There are still machines that cannot execute these
algorithms correctly, but their numbers seem to be dwindling as the IEEE standard becomes entrenched.

Perhaps the greatest limitation of the multiple-component approach is that while it easily extends the
precision of floating-point numbers, there is no simple way to extend the exponent range without losing
much of the speed. The obvious approach, associating a separate exponent field with each component, is sure
to be too slow. A more promising approach is to express each multiprecision number as amultiexpansion
consisting of digits of very large radix, where each digit is an expansion coupled with an exponent. In this
scheme, the true exponent of a component is the sum of the component’s own exponent and the exponent of
the expansion that contains it. The fast algorithms described in this chapter can be used to add or multiply
individual digits; digits are normalized by standard methods (such as those used by MPFUN). IEEE double
precision values have an exponent range of�1022 to 1023, so one could multiply digits of radix21000 with
a simple expansion multiplication algorithm, or digits of radix22000 with a slightly more complicated one
that splits each digit in half before multiplying.

The C code I have made publicly available might form the beginning of an extensive library of arithmetic
routines similar to MPFUN, but a great deal of work remains to be done. In addition to the problem of
expanding the exponent range, there is one problem that is particular to the multiple-component approach:
it is not possible to use FFT-based multiplication algorithms without first renormalizing each expansion
to a multiple-digit form. This normalization is not difficult to do, but it costs time and puts the multiple-
component method at a disadvantage relative to methods that keep numbers in digit form as a matter of
course.

As Priest points out, multiple-component algorithms can be used to implement extended (but finite)
precision arithmetic as well as exact arithmetic; simply compress and then truncate each result to a fixed
number of components. Perhaps the greatest potential of these algorithms lies not with arbitrary precision
libraries, but in providing a fast and simple way to extend slightly the precision of critical variables in numer-
ical algorithms. Hence, it would not be difficult to provide a routine that quickly computes the intersection
point of two segments with double precision endpoints, correctly rounded to a double precision result. If an
algorithm can be made significantly more stable by using double or quadruple precision for a few key val-
ues, it may save a researcher from spending a great deal of time devising and analyzing a stabler algorithm;
Priest [77,x5.1] offers several examples. Speed considerations may make it untenable to accomplish this by
calling a standard extended precision library. The techniques Priest and I have developed are simple enough
to be coded directly in numerical algorithms, avoiding function call overhead and conversion costs.

A useful tool in coding such algorithms would be an expression compiler similar to Fortune and Van
Wyk’s LN [37, 36], which converts an expression into exact arithmetic code, complete with error bound
derivation and floating-point filters. Such a tool could also automate the process of breaking an expression
into adaptive stages as described in Section 6.4.

To see how adaptivity can be used for more than just determining the sign of an expression, suppose one
wishes to find, with relative error no greater than 1%, the centerd of a circle that passes through the three
pointsa, b, andc. One may use the following expressions.

dx = cx �

����� ay � cy (ax � cx)
2 + (ay � cy)

2

by � cy (bx � cx)
2 + (by � cy)

2

�����
2

����� ax � cx ay � cy
bx � cx by � cy

�����
; dy = cy +

����� ax � cx (ax � cx)
2 + (ay � cy)

2

bx � cx (bx � cx)
2 + (by � cy)

2

�����
2

����� ax � cx ay � cy
bx � cx by � cy

�����
:

The denominator of these fractions is precisely the expression computed by ORIENT2D. The computation
of d is unstable ifa, b, andc are nearly collinear; roundoff error in the denominator can dramatically change
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the result, or cause a division by zero. Disaster can be avoided, and the desired error bound enforced, by
computing the denominator with a variant of ORIENT2D that accepts an approximation only if its relative
error is roughly half of one percent. A similar adaptive routine could accurately compute the numerators.

It might be fruitful to explore whether the methods described by Clarkson [23] and Avnaim et al. [2] can
be extended by fast multiprecision methods to handle arbitrary double precision floating-point inputs. One
could certainly relax their constraints on the bit complexity of the inputs; for instance, the method of Av-
naim et al. could be made to perform the INSPHEREtest on64-bit inputs using expansions of length three.
Unfortunately, it is not obvious how to adapt these integer-based techniques to inputs with wildly differing
exponents. It is also not clear whether such hybrid algorithms would be faster than straightforward adap-
tivity. Nevertheless, Clarkson’s approach looks promising for larger determinants. Although my methods
work well for small determinants, they are unlikely to work well for sizes much larger than5 � 5. Even if
one uses Gaussian elimination rather than cofactor expansion (an important adjustment for matrices larger
than5� 5), the adaptivity technique does not scale well with determinants, because of the large number of
terms in the expanded polynomial. Clarkson’s technique may be the only economical approach for matrices
larger than10� 10.

Whether or not these issues are resolved in the near future, researchers can make use today of tests
for orientation and incircle in two and three dimensions that are correct, fast in most cases, and applicable
to single or double precision floating-point inputs. I invite working computational geometers to try my
code in their implementations, and hope that it will save them from worrying about robustness so they may
concentrate on geometry.



196 Jonathan Richard Shewchuk



Appendix A

Linear-Time Expansion Addition without
Round-to-Even Tiebreaking

Theorem 59 Let e =
Pm

i=1 ei and f =
Pn

i=1 fi be nonoverlapping expansions ofm and n p-bit com-
ponents, respectively, wherep � 3. Suppose that the components of bothe and f are sorted in order of
increasing magnitude, except that any of theei or fi may be zero. Then the following algorithm will produce
a nonoverlapping expansionh such thath =

Pm+n
i=1 hi = e + f , where the components ofh are also in

order of increasing magnitude, except that any of thehi may be zero.

LINEAR-EXPANSION-SUM(e; f)
1 Mergee andf into a single sequenceg, in order of

nondecreasing magnitude (possibly with interspersed zeroes)
2 (Q2; q2)( FAST-TWO-SUM(g2; g1)
3 for i( 3 to m+ n
4 (Ri; hi�2)( FAST-TWO-SUM(gi; qi�1)
5 (Qi; qi)( TWO-SUM(Qi�1; Ri)
6 hm+n�1 ( qm+n

7 hm+n ( Qm+n

8 return h

Qi + qi is an approximate sum of the firsti components ofg; see Figure A.1.

Proof: At the end of each iteration of thefor loop, the invariantQi + qi +
Pi�2

j=1 hj =
Pi

j=1 gj holds.
Certainly this invariant holds fori = 2 after Line 2 is executed. From Lines 4 and 5, we have thatQi+ qi+
hi�2 = Qi�1 + qi�1 + gi; the invariant follows by induction. (The use of FAST-TWO-SUM in Line 4 will
be justified shortly.) This assures us that after Lines 6 and 7 are executed,

Pm+n
j=1 hj =

Pm+n
j=1 gj , so the

algorithm produces a correct sum.

The proof thath is nonoverlapping and increasing relies on the fact that the components ofg are summed
in order from smallest to largest, so the running totalQi+ qi never grows much larger than the next compo-
nent to be summed. Specifically, I prove by induction that the exponent ofQi is at most one greater than the
exponent ofgi+1, and the componentsh1; : : : ; hi�1 are nonoverlapping and in order of increasing magni-
tude (excepting zeros). This statement holds fori = 2 becausejQ2j = jg1 � g2j � 2jg2j � 2jg3j. To prove
the statement in the general case, assume (for the inductive hypothesis) that the exponent ofQi�1 is at most
one greater than the exponent ofgi, and the componentsh1; : : : ; hi�2 are nonoverlapping and increasing.
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Figure A.1: Operation of LINEAR-EXPANSION-SUM. Qi + qi maintains an approximate running total. The
FAST-TWO-SUM operations in the bottom row exist to clip a high-order bit off each qi term, if necessary,
before outputting it.

qi�1 is the roundoff error of the TWO-SUM operation that producesQi�1, sojqi�1j � 1
2ulp(Qi�1). This

inequality and the inductive hypothesis imply thatjqi�1j � ulp(gi), which justifies the use of a FAST-TWO-
SUM operation in Line 4. This operation produces the sumjRi + hi�2j = jgi + qi�1j < (2p + 1)ulp(gi).
Corollary 43(a) implies thatjhi�2j < ulp(gi). Becauseh1; : : : ; hi�2 are nonoverlapping, we have the bound
jPi�2

j=1 hj j < ulp(gi) � ulp(gi+1).

Assume without loss of generality that the exponent ofgi+1 is p � 1, so that ulp(gi+1) = 1, and
jg1j; jg2j; : : : ; jgi+1j are bounded below2p. Becauseg is formed by merging two nonoverlapping increasing
expansions,jPi

j=1 gjj < 2p + 2p�1. Consider, for instance, ifgi+1 = 1000 (in four-bit arithmetic); then
jPi

j=1 gj j can be no greater than the sum of1111:1111 : : : and111:1111 : : :.

Substituting these bounds into the invariant given at the beginning of this proof, we havejQi + qij �
jPi�2

j=1 hj j + jPi
j=1 gj j < 2p + 2p�1 + 1, which confirms that the exponent ofQi is at most one greater

than the exponent ofgi+1.

To show thathi�1 is larger than previous components ofh (or is zero) and does not overlap them,
observe from Figure A.1 thathi�1 is formed (fori � 3) by summinggi+1, Ri, andQi�1. It can be shown
that all three of these are either equal to zero or too large to overlaphi�2, and hence so ishi�1. We have
already seen thatjhi�2j < ulp(gi), which is bounded in turn by ulp(gi+1). It is clear thatjhi�2j is too small
to overlapRi because both are produced by a FAST-TWO-SUM operation. Finally,jhi�2j is too small to
overlapQi�1 becausejhi�2j � jqi�1j (applying Lemma 36 to Line 4), andjqi�1j � 1

2ulp(Qi�1).

The foregoing discussion assumes that none of the input components is zero. If any of thegi is zero,
the corresponding output componenthi�2 is also zero, and the accumulator valuesQ andq are unchanged
(Qi = Qi�1, qi = qi�1). �



Appendix B

Why the Tiebreaking Rule is Important

Theorem 48 is complicated by the need to consider the tiebreaking rule. This appendix gives an example that
proves that this complication is necessary to ensure that FAST-EXPANSION-SUM will produce nonoverlap-
ping output. If one’s processor does not use round-to-even tiebreaking, one might use instead an algorithm
that is independent of the tiebreaking rule, such as the slower LINEAR-EXPANSION-SUM in Appendix A.

Section 6.3.4 gave examples that demonstrate that FAST-EXPANSION-SUM does not preserve the non-
overlapping or nonadjacent properties. The following example demonstrates that, in the absence of any
assumption about the tiebreaking rule, FAST-EXPANSION-SUM does not preserve any property that implies
the nonoverlapping property. (As we have seen, the round-to-even rule ensures that FAST-EXPANSION-SUM

preserves the strongly nonoverlapping property.)

For simplicity, assume that four-bit arithmetic is used. Suppose the round-toward-zero rule is initially
in effect. The incompressible expansions214 + 28 + 24 + 1 and211 + 26 + 22 can each be formed by
summing their components with any expansion addition algorithm. Summing these two expansions, FAST-
EXPANSION-SUM (with zero elimination) yields the expansion1001 � 211 + 28 + 26 + 24 + 22 + 1.
Similarly, one can form the expansion1001 � 210 + 27 + 25 + 23 + 21. Summing these two in turn yields
1101�211+210+1111�25+24+23+22+21+1, which is nonoverlapping but not strongly nonoverlapping.

Switching to the round-to-even rule, suppose FAST-EXPANSION-SUM is used to sum two copies of this
expansion. The resulting “expansion” is111 � 213 + �211 + 210 + �25 + 25 + �21, which contains a
pair of overlapping components. Hence, it is not safe to mix the round-toward-zero and round-to-even rules,
and it is not possible to prove that FAST-EXPANSION-SUM produces nonoverlapping expansions for any
tiebreaking rule.

Although the expansion above is not nonoverlapping, it is not particularly bad, in the sense that AP-
PROXIMATE will nonetheless produce an accurate approximation of the expansion’s value. It can be proven
that, regardless of tiebreaking rule, FAST-EXPANSION-SUM preserves what I call theweakly nonoverlap-
ping property, which allows only a small amount of overlap between components, easily fixed by compres-
sion. (Details are omitted here, but I am quite certain of the result. I produced a proof similar to that of
Theorem 48, and rivalling it in complexity, before I discovered the strongly nonoverlapping property.) I
conjecture that the geometric predicates of Section 6.5 work correctly regardless of tiebreaking rule.
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[3] Ivo Babuška and A. K. Aziz.On the Angle Condition in the Finite Element Method. SIAM Journal on
Numerical Analysis13(2):214–226, April 1976.

[4] David H. Bailey. A Portable High Performance Multiprecision Package. Technical Report RNR-90-
022, NASA Ames Research Center, Moffett Field, California, May 1993.

[5] B. S. Baker, E. Grosse, and C. S. Rafferty.Nonobtuse Triangulation of Polygons. Discrete and
Computational Geometry3(2):147–168, 1988.

[6] T. J. Baker.Automatic Mesh Generation for Complex Three-Dimensional Regions using a Constrained
Delaunay Triangulation. Engineering with Computers5:161–175, 1989.

[7] Hesheng Bao, Jacobo Bielak, Omar Ghattas, David R. O’Hallaron, Loukas F. Kallivokas,
Jonathan Richard Shewchuk, and Jifeng Xu.Earthquake Ground Motion Modeling on Parallel Com-
puters. Supercomputing ’96 (Pittsburgh, Pennsylvania), November 1996.

[8] C. Bradford Barber.Computational Geometry with Imprecise Data and Arithmetic. Ph.D. thesis, De-
partment of Computer Science, Princeton University, Princeton, New Jersey, October 1992. Available
as Technical Report CS-TR-377-92.

[9] T. J. Barth and D. C. Jesperson.The Design and Application of Upwind Schemes on Unstructured
Meshes. Proceedings of the AIAA 27th Aerospace Sciences Meeting (Reno, Nevada), 1989.

[10] Marshall Bern and David Eppstein.Mesh Generation and Optimal Triangulation. Computing in
Euclidean Geometry (Ding-Zhu Du and Frank Hwang, editors), Lecture Notes Series on Computing,
volume 1, pages 23–90. World Scientific, Singapore, 1992.

[11] Marshall Bern, David Eppstein, and John R. Gilbert.Provably Good Mesh Generation. 31st Annual
Symposium on Foundations of Computer Science, pages 231–241. IEEE Computer Society Press,
1990.

[12] Adrian Bowyer.Computing Dirichlet Tessellations. Computer Journal24(2):162–166, 1981.

201



202 Jonathan Richard Shewchuk

[13] Christoph Burnikel, Jochen K¨onemann, Kurt Mehlhorn, Stefan N¨aher, Stefan Schirra, and Christian
Uhrig. Exact Geometric Computation in LEDA. Eleventh Annual Symposium on Computational
Geometry (Vancouver, British Columbia, Canada), pages C18–C19. Association for Computing Ma-
chinery, June 1995.

[14] Scott A. Canann, S. N. Muthukrishnan, and R. K. Phillips.Topological Refinement Procedures for
Triangular Finite Element Meshes. Engineering with Computers12(3 & 4):243–255, 1996.

[15] John Canny.Some Algebraic and Geometric Computations in PSPACE. 20th Annual Symposium on
the Theory of Computing (Chicago, Illinois), pages 460–467. Association for Computing Machinery,
May 1988.

[16] Graham F. Carey and John Tinsley Oden.Finite Elements: Computational Aspects. Prentice-Hall,
Englewood Cliffs, New Jersey, 1984.

[17] James C. Cavendish, David A. Field, and William H. Frey.An Approach to Automatic Three-
Dimensional Finite Element Mesh Generation. International Journal for Numerical Methods in En-
gineering21(2):329–347, February 1985.

[18] L. Paul Chew.Constrained Delaunay Triangulations. Algorithmica4(1):97–108, 1989.

[19] . Guaranteed-Quality Triangular Meshes. Technical Report TR-89-983, Department of Com-
puter Science, Cornell University, 1989.

[20] . Building Voronoi Diagrams for Convex Polygons in Linear Expected Time. Technical Report
PCS-TR90-147, Department of Mathematics and Computer Science, Dartmouth College, 1990.

[21] . Guaranteed-Quality Mesh Generation for Curved Surfaces. Proceedings of the Ninth Annual
Symposium on Computational Geometry (San Diego, California), pages 274–280. Association for
Computing Machinery, May 1993.

[22] . Guaranteed-Quality Delaunay Meshing in 3D. Proceedings of the Thirteenth Annual Sym-
posium on Computational Geometry. Association for Computing Machinery, 1997.

[23] Kenneth L. Clarkson.Safe and Effective Determinant Evaluation. 33rd Annual Symposium on Founda-
tions of Computer Science (Pittsburgh, Pennsylvania), pages 387–395. IEEE Computer Society Press,
October 1992.

[24] Kenneth L. Clarkson and Peter W. Shor.Applications of Random Sampling in Computational Geome-
try, II. Discrete & Computational Geometry4(1):387–421, 1989.

[25] E. F. D’Azevedo and R. B. Simpson.On Optimal Interpolation Triangle Incidences. SIAM Journal
on Scientific and Statistical Computing10:1063–1075, 1989.

[26] T. J. Dekker.A Floating-Point Technique for Extending the Available Precision. Numerische Mathe-
matik 18:224–242, 1971.

[27] Boris N. Delaunay.Sur la Sph̀ere Vide. Izvestia Akademia Nauk SSSR, VII Seria, Otdelenie Matem-
aticheskii i Estestvennyka Nauk7:793–800, 1934.

[28] Tamal K. Dey, Chanderjit L. Bajaj, and Kokichi Sugihara.On Good Triangulations in Three Dimen-
sions. Proceedings of the Symposium on Solid Modeling Foundations and CAD/CAM Applications.
Association for Computing Machinery, 1991.



Bibliography 203

[29] David P. Dobkin and Michael J. Laszlo.Primitives for the Manipulation of Three-Dimensional Subdi-
visions. Algorithmica4:3–32, 1989.

[30] Rex A. Dwyer. A Faster Divide-and-Conquer Algorithm for Constructing Delaunay Triangulations.
Algorithmica2(2):137–151, 1987.

[31] Steven Fortune.A Sweepline Algorithm for Voronoi Diagrams. Algorithmica2(2):153–174, 1987.

[32] . Stable Maintenance of Point Set Triangulations in Two Dimensions. 30th Annual Symposium
on Foundations of Computer Science, pages 494–499. IEEE Computer Society Press, 1989.

[33] . Voronoi Diagrams and Delaunay Triangulations. Computing in Euclidean Geometry (Ding-
Zhu Du and Frank Hwang, editors), Lecture Notes Series on Computing, volume 1, pages 193–233.
World Scientific, Singapore, 1992.

[34] . Progress in Computational Geometry. Directions in Geometric Computing (R. Martin, edi-
tor), chapter 3, pages 81–128. Information Geometers Ltd., 1993.

[35] . Numerical Stability of Algorithms for 2D Delaunay Triangulations. International Journal of
Computational Geometry & Applications5(1–2):193–213, March–June 1995.

[36] Steven Fortune and Christopher J. Van Wyk.Efficient Exact Arithmetic for Computational Geometry.
Proceedings of the Ninth Annual Symposium on Computational Geometry (San Diego, California),
pages 163–172. Association for Computing Machinery, May 1993.

[37] . Static Analysis Yields Efficient Exact Integer Arithmetic for Computational Geometry. ACM
Transactions on Graphics15(3):223–248, July 1996.

[38] Lori A. Freitag, Mark Jones, and Paul Plassman.An Efficient Parallel Algorithm for Mesh Smoothing.
Fourth International Meshing Roundtable (Albuquerque, New Mexico), pages 47–58. Sandia National
Laboratories, October 1995.

[39] Lori A. Freitag and Carl Ollivier-Gooch.A Comparison of Tetrahedral Mesh Improvement Techniques.
Fifth International Meshing Roundtable (Pittsburgh, Pennsylvania), pages 87–100. Sandia National
Laboratories, October 1996.

[40] . Tetrahedral Mesh Improvement Using Swapping and Smoothing. To appear in International
Journal for Numerical Methods in Engineering, 1997.

[41] William H. Frey. Selective Refinement: A New Strategy for Automatic Node Placement in Graded
Triangular Meshes. International Journal for Numerical Methods in Engineering24(11):2183–2200,
November 1987.

[42] William H. Frey and David A. Field.Mesh Relaxation: A New Technique for Improving Triangulations.
International Journal for Numerical Methods in Engineering31:1121–1133, 1991.

[43] P. L. George, F. Hecht, and E. Saltel.Automatic Mesh Generator with Specified Boundary. Computer
Methods in Applied Mechanics and Engineering92(3):269–288, November 1991.

[44] David Goldberg.What Every Computer Scientist Should Know About Floating-Point Arithmetic. ACM
Computing Surveys23(1):5–48, March 1991.



204 Jonathan Richard Shewchuk

[45] N. A. Golias and T. D. Tsiboukis.An Approach to Refining Three-Dimensional Tetrahedral Meshes
Based on Delaunay Transformations. International Journal for Numerical Methods in Engineering
37:793–812, 1994.

[46] Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir.Randomized Incremental Construction of
Delaunay and Voronoi Diagrams. Algorithmica 7(4):381–413, 1992. Also available as Stanford
University Computer Science Department Technical Report STAN-CS-90-1300 and in Springer-Verlag
Lecture Notes in Computer Science, volume 443.

[47] Leonidas J. Guibas and Jorge Stolfi.Primitives for the Manipulation of General Subdivisions and the
Computation of Voronoi Diagrams. ACM Transactions on Graphics4(2):74–123, April 1985.

[48] Carol Hazelwood.Approximating Constrained Tetrahedrizations. Computer Aided Geometric Design
10:67–87, 1993.

[49] L. R. Hermann.Laplacian-Isoparametric Grid Generation Scheme. Journal of the Engineering Me-
chanics Division of the American Society of Civil Engineers102:749–756, October 1976.

[50] Christoph M. Hoffmann.The Problems of Accuracy and Robustness in Geometric Computation. Com-
puter22(3):31–41, March 1989.

[51] A. Jameson, T. J. Baker, and N. P. Weatherill.Calculation of Inviscid Transonic Flow over a Complete
Aircraft. Proceedings of the 24th AIAA Aerospace Sciences Meeting (Reno, Nevada), 1986.

[52] Barry Joe.Three-Dimensional Triangulations from Local Transformations. SIAM Journal on Scientific
and Statistical Computing10:718–741, 1989.

[53] . Construction of Three-Dimensional Triangulations using Local Transformations. Computer
Aided Geometric Design8:123–142, 1991.

[54] . Construction ofk-Dimensional Delaunay Triangulations using Local Transformations.
SIAM Journal on Scientific Computing14(6):1415–1436, November 1993.

[55] . Construction of Three-Dimensional Improved-Quality Triangulations Using Local Transfor-
mations. SIAM Journal on Scientific Computing16(6):1292–1307, November 1995.

[56] Michael Karasick, Derek Lieber, and Lee R. Nackman.Efficient Delaunay Triangulation Using Ratio-
nal Arithmetic. ACM Transactions on Graphics10(1):71–91, January 1991.

[57] Donald Ervin Knuth.The Art of Computer Programming: Seminumerical Algorithms, second edition,
volume 2. Addison Wesley, Reading, Massachusetts, 1981.

[58] Anton Szandor LaVey.The Satanic Bible. Avon Books, New York, 1969.

[59] Charles L. Lawson.Software forC1 Surface Interpolation. Mathematical Software III (John R. Rice,
editor), pages 161–194. Academic Press, New York, 1977.

[60] Der-Tsai Lee and Bruce J. Schachter.Two Algorithms for Constructing a Delaunay Triangulation.
International Journal of Computer and Information Sciences9(3):219–242, 1980.

[61] Seppo Linnainmaa.Analysis of Some Known Methods of Improving the Accuracy of Floating-Point
Sums. BIT 14:167–202, 1974.



Bibliography 205
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